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CHAPTER 1 
INTRODUCTION 

1.1.     Overview 

The main components of many control systems, such as actuators and sensors, change 

with time. These systems can, therefore, be modeled as linear time-varying multivariable 

continuous systems. Much research has already been conducted in the area of the control of 

such systems. Techniques exist which utilize the concepts of controllability, observability, 

and stabilization to transform such systems into canonical forms so that state estimation and 

state feedback techniques can be applied to control the system [18]-[22]. Another technique 

exists to transform linear multivariable systems that are minimally observable into equivalent 

canonical forms [ 5]. There is also a scheme which stabilizes controllable time-varying 

systems [29]. Another study found that if a time-varying system is lexicografixedly 

controllable, then there exists a state feedback controller [21] to stabilize the system by 

assigning an arbitrary set of eigenvalues to the closed-loop feedback system. 

Microprocessors are used in most modern control systems. Their use depends on the 

techniques taught in discrete-time or computer control courses [23]. However, these 

techniques deal mainly with time-invariant discrete systems. The concepts of controllability, 

observability, and stabilization for linear time-varying multivariable discrete systems have 

not yet been exploited. Therefore, state estimation and state feedback techniques do not exist 

for such systems. The lack of research in this area is probably due to the mathematical 

difficulties involved in solving such systems. 



The outputs of linear time-varying components, such as actuators and sensors, are 

typically used as inputs to computer control systems. The resulting system is modeled as a 

linear time-varying multivariable discrete control system. Since the techniques of state 

feedback and state estimation do not exist for such systems, control engineers are forced to 

use intuition and experience instead of theory to design these control systems. 

This research considers the control problem of a linear time-varying continuous 

system that is not lexicografixedly controllable [20]. A state feedback technique to stabilize 

such systems does not currently exist. A new approach, which considers the discretization of 

the linear time-varying continuous system and the selection of a sampling period to make the 

resulting discrete system lexicografixedly controllable, is proposed. Algorithms needed to 

control the resulting linear time-varying discrete system are also developed. 

1.2.    Problem Statement 

A technique to control linear time-varying multivariable continuous systems which 

are not lexicografixedly controllable must be developed. The following statement defines the 

problem considered in this report: 

Given a linear time-varying multivariable continuous system that is not 

lexicografixedly controllable, discretize the system through the application of 

sample and zero-order hold devices and then develop a method to stabilize the 

resulting discrete system through the application of state feedback. 

The following obstacles must be overcome in order to solve this problem: 

1)        Equations which model the resulting discrete system must be derived. 



2) A controllability theorem for linear time-varying discrete systems must be 

developed. 

3) A state feedback technique which asymptotically stabilizes the linear time- 

varying discrete system must be developed. 

This research effort focuses on overcoming these obstacles. 

1.3. Research Results 

The results of this In-House Laboratory Independent Research (ILIR) program 

provide advances in the theory of the control of linear systems. Contributions which advance 

control theory are made in the areas of discretization, controllability, canonical 

transformation, state feedback, and stabilization. Control algorithms are developed and 

coded in the Maple language to form a library of Maple Symbolic Math routines which can 

be used in the design and simulation of physical systems. 

1.4. Transition of Research 

The results of this research are relevant to all military and commercial systems that 

use time-varying components as inputs to microprocessor-based control systems. Results 

will be directly transitioned into Army prototype designs for generator set controls, electrical 

machinery controls, engine governor controllers, electric drive systems, and robotic systems. 

These results will also be transitioned to the commercial and academic communities through 

technical publications and presentations at conferences and symposia. The principal 

investigator presented an invited paper documenting interim ILIR results on controllability 

and served as a Session Chair at the 1994 International Conference on Computers and Their 



Applications [15]. Interim ILIR results on state feedback and stabilization were presented in 

another document [16]. 

1.5.     Report Organization 

An overview of the report is given in Chapter 1. Relevant background information 

pertaining to linear continuous and discrete systems is reviewed in Chapter 2. Chapter 3 is 

devoted to the discretization of linear time-varying continuous systems. Equations modeling 

the discretized system in terms of its associated continuous system are derived. A 

controllability theorem for the class of systems discretized in Chapter 3 is developed and its 

associated controllability matrix is derived in Chapter 4. These results are used in the 

development of an equivalence transformation and a state feedback theorem found in Chapter 

5. An algorithm which asymptotically stabilizes the above class of linear time-varying 

discrete systems is also presented. Chapter 6 presents a summary of the report and provides 

recommendations for future research. Appendix A includes the Maple control algorithms 

used to solve the example problems in Chapters 3-5. A copy of the ISCA paper documenting 

interim ILIR results is included as Appendix B. 



CHAPTER 2 
REVIEW OF LINEAR SYSTEMS 

2.1. Introduction 

This chapter reviews the research underlying the development of linear continuous 

and linear discrete systems. Sections 2.2 and 2.3 present the mathematical models describing 

linear continuous and linear discrete systems and the associated concepts of controllability, 

canonical transformations, and stabilization. It is these models and concepts which are used 

as the groundwork in the solution of the problem statement presented in Chapter 1. 

2.2. Linear Continuous Systems 

The input-output description of a system gives the mathematical relationship between 

the inputs and the outputs [ 6]. A continuous system with p inputs and q outputs can be 

represented by the following figure. 

u,(t) 
u2(t) 

u„(t) 

SYSTEM 

-* yi(t) 

■* y2(t) 

y,(t) 

Figure 2-1 Linear Time-Varying Multivariable Continuous System 

The system is said to be relaxed if there is no energy stored in the system at time t = -oo. The 

mathematical relationship between the inputs and the outputs of a relaxed system is given by 

y(t) = H{u(t)}, 

(2-1) 



where y(t) is the (qxl) output vector, u(t) is the (pxl) input vector, and H{ } is some operator 

or function that uniquely specifies the output y(t) in terms of the input u(t). 

A linear continuous system is one in which the principle of superposition applies [25]. 

That is, if yj(t) is the response to the input Uj(t) and y2(t) is the response to the input u2(t) then 

the system is linear if and only if, for every scalar a and ß, the response to the input 

auj(t)+ßu2(t) is ayj(t)+ßy2(t). Such a system can be modeled by the following state and 

input equations [ 6], 

x(t) = A(t)x(t) + B(t)u(t) 

(2-2) 

and 

y(t) = C(t)x(t) + E(t)u(t), 

(2-3) 

where x(t) is the (nxl) state vector, A(t) is the (nxn) state matrix, B(t) is the (nxp) input 

matrix, C(t) is the (qxn) output matrix, and E(t) is the (qxp) direct transmission matrix. 

The solution to the state equation (2-2) of the linear time-varying continuous system 

is given in [24] as 

t 

x(t) = <D(t,t0)x0 + J <D(t,x)B(x)u(x)dx, 

'o 

(2-4) 

where the matrix O(t,t0) is referred to as the state transition matrix. The state transition 

matrix is the unique solution to 



O(t,t0) = A(t)(D(t,t0). 

(2-5) 

Equation (2-4) shows that the state transition matrix completely determines the solution of 

the state equation (2-2). The solution of (2-5) is very difficult, except for the following 

special cases. 

Special Case 1: Triangular State Matrix 

If the state matrix A(t) of the continuous system is a triangular matrix then the 

solution of (2-5) can be reduced to that of solving a set of scalar differential equations [ 6]. 

In this case the state transition matrix can be readily obtained from the following equation, 

<D(t,t0) = ¥(t)*F-'(t0) 

(2-6) 

where *F(t) is any fundamental matrix consisting of any n linearly independent solutions of 

x(t) = A(t)x(t). 

(2-7) 

Special Case 2: Commutative State Matrix 

If the state matrix A(t) of the continuous system has the following commutative 

property 

A(t) J A(x)di J A(T)dx A(t) 

J      L'o 

(2-8) 



for all t and t0, then the unique solution of ( 2-5) is given in [ 6] as 

<D(t,t0) = exp J A(T)dT 

(2-9) 

It has been shown in [ 6] that: 

1) if A(t) is a diagonal or a constant matrix, or 

2) if there is only one state 

then the commutative property holds and (2-9) can be used directly. 

Special Case 3: Ax Class 

If there exists a constant matrix Av such that the state matrix A(t) of the continuous 

system satisfies the following property 

A(t) = A1A(t)-A(t)A„ 

then the state transition matrix can be computed by the following equation [30]. 

<D(t,t0) = exp(A1t)exp[A2(t-t0)]exp(-A1t0) 

Note that the constant matrix Aj is not unique. The constant matrix A2 is given by 

A2=exp(-A1t0)[A(t0)-A1]exp(AIt0). 

(2-10) 

(2-11) 

(2-12) 



Special Case 4: (h(t) and Aj) Class 

If there exists a constant matrix A, and a non-zero scalar time function h(t) such that 

the derivative of h(t) exists and the state matrix A(t) of the continuous system satisfies the 

following property 

A(t)     h(t) 
A,A(t)-A(t)A,=- 

1 '     h(t)    ha(t) 

(2-13) 

(2-14) 

then the state transition matrix can be computed by [30], 

*(t,t0) = exp(A,g(t))exp(A2g(t)) 

where, the scalar time function g(t) is given by 

t 

g(t) = Jh(x)dx. 

(2-15) 

Note that the constant matrix Aj and the scalar time function h(t) are not unique. The 

constant matrix A2 is given by 

A2 = Ah(t0) —A,, 

(2-16) 

where 

A(t) 
Ah(tn)= lim . hVo;    t->t0h(t) 

(2-17) 



2.2.1.     Controllability 

The concept of controllability plays an important role in the optimal control of linear 

multivariable systems. If a given linear continuous system satisfies the condition of state 

controllability then closed-loop poles can be selected, such that the system that possesses 

such poles can be designed using state feedback techniques. 

There are different degrees of controllability; state controllability, uniform 

controllability, and lexicografixed controllability. The definition of each degree is defined as 

follows: 

Definition 2.1 The state equation (2-2) is said to be state controllable at time tff if 

there exists a finite time tj>t0 such that for any x(t0)andx(t]) in the state space, there exists 

an input u(t), applied from tQ to t}, that will transfer the state x(tQ) to the state x(tj) in a finite 

time. 

A controllability matrix M(t) is used to test for the condition of state controllability. 

The controllability matrix M(t) of the continuous system given in 

(2-2) is defined in[ 18] as 

M(t) = [M,(t)   M2(t)   -   M„(t)], 

(2-18) 

where 

Mi(t) = Zi",[B(t)] 

for i=l,2,...,n. The differential matrix operator Z[-] is given in[18] as 

(2-19) 

10 



Z[-] = -A(t)H+ £[■], 
dt 

(2-20) 

where 

z'Hszz^H 
q times 

(2-21) 

and 

z°[-]-H. 

(2-22) 

If the state and input matrices of the state equation are (n-1) times continuously 

differentiable, then the state equation is state controllable at time tQ if there exists a time t,>t 

such that 

rank[M(t)] = n. 

(2-23) 

Definition 2.2 The state equation (2-2) of a linear time-varying continuous system is 

said to be uniformly controllable on the time interval [tQ, t ], if 

rank[M(t)] = n 

(2-24) 

forallteft^tj]. 

Definition 2.3 A uniformly controllable system whose controllability matrix M(t) has 

a fixed lexicographic basis on the time interval [tQ, t} ] is said to be lexicografixedly 

11 



controllable on [tQ, ?; ]. The system is lexicografixedly controllable on the time interval 

[t0, tj ] if there exists an (nxn) sub-matrix ofM(t) that has full rank for all te[t , t ]. 

2.2.2.    Equivalence Transformations 

Transforming a linear system into an equivalent canonical form is an important 

technique used by control system designers. It allows the designer to work with a minimum 

number of system parameters [20]. An equivalence transformation is defined as follows: 

Definition 2.4 Consider the linear time-varying continuous system given by 

( 2-2). If there exists an (nxn) matrix Q(t) which is nonsingular and continuously 

differentiable in tfor all tz[t1, t2 ] such that x(t) = Q(t)x(t), then the system described by 

x-(t) = X(t)x(t) + B(t)u(t), 

(2-25) 

is said to be equivalent to the original system ( 2-2) and the matrix Q(t) is said to be an 

equivalence transformation on [t}, t2 ]. 

The equivalent state and input matrices of (2-25) can be computed as 

Ä(t) = (Q(t)A(t) + Q(t))Q-,(t) 

(2-26) 

and 

B(t) = Q(t)B(t). 

(2-27) 

Several techniques to transform linear systems into particular equivalent canonical 

forms already exist. Five such transformations for the class of linear time-varying 

12 



lexicografixedly controllable continuous systems were developed by Nguyen [18]. Since 

Nguyen's second canonical transformation was found to be useful in the solution of the 

problem statement in Chapter 1, the development of this transformation is presented in the 

following section. 

2.2.2.1.    Nguyen's Second Canonical Transformation 

Nguyen's second canonical transformation [18] converts a given linear time-varying 

multivariable system (2-2) which satisfies the property of lexicografixed controllability into 

an equivalent system (2-25). The associated equivalent state and input matrices have the 

following canonical structure, 

A(t) = 

A„(t) A12(t)    • -   AIp(t) 
A21(t) Aa(t)    • •   A2p(t) 

Apl(t) Ap2(t) App(t) 

where 

fori=l,2,...,p, and 

AH(t) = 

X X ...   x X 

1 0 ...    o 0 

0 '•. '. 0 

: 
■ '•.   0 ' 

0 ... 0    1 0 

m, 

m. 

(2-28) 

(2-29) 

13 



AiJ = 

X lxm, 

(mj-ljxitij 

(2-30) 

fori*j,i,j=l,2,...,p, and 

B(t) = 

±1 X ...    x 
0 0 ...    o 

0 0 ...    o 
* 

0 0 ... +1 

0 0 ...    o 

.0 0 ...    o. 

Nguyen's second canonical transformation is defined as 

Q(t) = 

"Q,(t)' 

Q2(t) 

.Qp(t). 

(2-31) 

where 

Qi(t) = 

W^ßj' 
wm'-2[ßj 

.     [ft]     . 

(2-32) 

(2-33) 

14 



for i=l,2,...,p. The differential matrix operator W[-] is defined as 

W[] = []A(t) + ^- 
dt []. 

(2-34) 

The row vector ß. can be computed as follows. Let the input matrix of the given system be 

represented by 

B(t) = [b,(t)   b2(t)   - bp(t)]. 

(2-35) 

The controllability matrix (2-18) can then be written a; 

M(t) = [b,(t)-bp(t)   Z[b,(t)]...z[bp(t)]   • ••  z'-'Ib.U)} ■•Z-'[bp(t)]]. 

(2-36) 

If the system is lexicografixedly controllable, then a unique set of n linearly independent 

column vectors of M(t) can be found. The selected vectors can be rean ranged to form the 

following nonsingular matrix, 

M(t) = [M,(t)   M2(t)   •• •   Mp(t)] 

(2-37) 

where 

M,(t) = [b,(t)   Z[b;(t)]   - z^foa)]] 

(2-38) 

15 



for i=l,2,...,p and where the subsystem controllability index m. is defined as the highest 

»m;-l integer for which Z "" [b.(t)] is linearly independent of other column vectors of (2-37). The 

inverse of (2-37) can be represented as 

M-'(t) = 

ß.,o(t) 

ß„(t) 

ß!:™d(t) 

ßP,.(t) 

ßP,m„-,(t). 

(2-39) 

where the ß. 's are the row vectors of M '(t). ß. is defined in [18] as 

Pk  — Pk,mk-1 

(2-40) 

for k= 1,2,...,p. 

Nguyen's second canonical transformation can now be computed by substituting 

( 2-34) and ( 2-40) into (2-32) and (2-33). 

2.2.2.1.1.    Example 

The application of Nguyen's second canonical transformation to the following linear 

time-varying multivariable continuous system, 

16 



x(t) = 

1    t3    0 o  o" 
0    2    t2 x(t) + 1    1 

_t    0     3. i.0   t2J 
u(t) 

(2-41) 

produces an equivalent system with the following canonical structure, 

x(t) = 

-3t"' + 3   6t"' + 3t-2 - 2 

1 0 

0 -t' 

-t* 

0 

3-2tH 

-1 -1 

x(t) + 0     0 

.0     1. 

u(t). 

(2-42) 

2.2.2.1.2.    Nguyen's Second Canonical Transformation for Single-Input Systems 

If the given system is a linear time-varying uniformly controllable single input system 

with a state equation given by 

x(t) = A(t)x(t) + b(t)u(t), 

(2-43) 

then (2-37)-( 2-40) reduce to 

M(t) = M(t) = [b(t)   Z[b(t)]   -   Zn-'[b(t)]], 

(2-44) 

M"1(t) = 

" ß«,o(t) 
ßu(t) 

.ß..„-.(t). 

ß^ßu-P 

(2-45) 

(2-46) 

17 



and ( 2-32) reduces to 

Q(t) = 

wn-'[ß]' 
w-2[ß] 

. [ß] . 

(2-47) 

For single-input systems, the equivalent state (2-28) and input (2-31) matrices have the 

following canonical form, 

A(t) = 

X X ...   x xT 
1 0 ...    o 0 

0 * 

■.   0 

0   ' 

0 ... 0     1 o[ 

(2-48) 

and 

b = 

(-1)- 
0 

0 

fn. 

(2-49) 

2.2.3.    Stabilization of Linear Continuous Systems 

Stability is an important qualitative property in control system design. If a system is 

not stable, it is usually of no practical use [6]. It is well known that a time-invariant system 

is asymptotically stable if all of the eigenvalues have negative real parts [18]. Therefore, all 

18 



the eigenvalues of the given system must be movable so that the designer can assign them to 

the left hand side of the complex plane. The stability of a time-invariant continuous system 

can be determined directly from the state matrix A(t). 

Various stability conditions have been obtained for linear time-varying continuous 

systems. Most of these methods are difficult to use because they depend on knowledge of the 

state transition matrix. However, Nguyen developed a stabilization scheme that is straight- 

forward and does not depend on knowledge of the state transition matrix [18]. Nguyen uses a 

state feedback matrix to force the closed-loop feedback equivalent system to become a time- 

invariant system having stable eigenvalues. This stabilization scheme uses a Lyapunov 

transformation to prove the asymptotic stability of a time-invariant equivalent system which 

implies the asymptotic stability of its corresponding time-varying original system. Nguyen's 

state feedback theorem for the class of linear time-varying single-input continuous systems is 

presented below. 

If the linear time-varying single-input continuous system given by (2-43) is uniformly 

controllable on [tQ,oo), then there exists a state feedback law u(t)=K(t)x(t) that will 

asymptotically stabilize the given system (2-43). After applying the state feedback law, the 

given system can be modeled as 

x(t) = [A(t) + b(t)K(t)]x(t). 

(2-50) 

If K(t) is chosen properly, the resulting closed-loop system will be asymptotically stable. An 

algorithm for determining the required feedback matrix K(t) is given below. 
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Algorithm 2.1 

1)        Apply Nguyen's second canonical transformation to the given linear time-varying 

single-input continuous system. The state and input matrices of the equivalent system will 

assume the following form, 

ail       ai2 "•   aln 

A(t) = 
I„-> "(n-l)xl 

(2-51) 

and 

b = 

(-ir 
0 

0 

(2-52) 

where the coefficients äu for i = 1,2, • • •, n are the time varying parameters of (2-48). 

2)        Select the desired eigenvalues X,, X2, • • •, XB and compute the characteristic equation. 

{X-X1){X-X2)-{X-XD) = XD+aB_1X
n-'+-+a1X+o-o 

(2-53) 

3)        Compute the equivalent feedback matrix K(t). 

K(t) = ^p-[-ä1I-an_1   •••   -äln-a0] 

4)        Compute the equivalent state matrix of the closed-loop feedback system. 

(2-54) 
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Ac=A(t) + b(t)K(t) = 

-«„-i    -a-2 -a, 01 

Ln-1 -"(n-l)xl 

(2-55) 

Computing the eigenvalues of (2-55) will verify that the equivalent system possesses the 

desired eigenvalues A,,, A,2, • • •, An. 

5)        Compute the feedback matrix K(t). 

K(t) = K(t)Q(t) 

(2-56) 

It is this algorithm which will serve as part of the baseline for the solution of the 

problem statement presented in Chapter 1. 

2.3.    Linear Discrete Systems 

Most modern control systems are implemented through the use of sampled-data or 

discrete methods which rely on the use of either a microprocessor or a digital signal 

processor. Sample-and-hold devices are used extensively in modern control systems. A 

sampler converts a given analog signal into a pulse-amplitude modulated signal while a hold 

device simply freezes the value of the pulse for a prescribed duration of time [11]. A zero- 

order hold device freezes the sampled value until the next sample arrives. 

If a sample and zero-order hold is applied to each input of the continuous system 

given in Figure 2-1, a linear time-varying multivariable discrete system as depicted below is 

obtained. 
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Figure 2-2 Linear Time-Varying Multivariable Discrete System 

The resulting discrete system can be modeled by the following dynamic equations, 

x((k + 1)T) = F(k,T)x(kT) + G(k,T)u(kT) 

(2-57) 

and 

y(kT) = C(kT)x(kT) + E(kT)u(kT), 

(2-58) 

where x(kT) is the (nxl) state vector, y(kT) is the (qxl) output vector, u(kT) is the (pxl) 

input vector, F(k,T) is the (nxn) state matrix, G(k,T) is the (nxp) input matrix, C(kT) is the 

(qxn) output matrix, E(kT) is the (qxp) direct transmission matrix, and T is the sampling 

period. The appearance of the variable k in the matrices F(k,T), G(k,T), C(kT), and E(kT) 

implies that these matrices are time-varying. If the variable k does not appear in these 

matrices, then the system is assumed to be time-invariant. For the time-invariant case, the 

state equations simplify to 

x((k + 1)T) = F(T)x(kT) + G(T)u(kT) 

(2-59) 

and 
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y(kT) = C(T)x(kT) + E(T)u(kT). 

(2-60) 

2.3.1.    Controllability 

The concept of controllability plays an important role in the design of linear discrete 

systems. Controllability for this class of systems can be defined as follows: 

Definition 2.5 The linear discrete system given by ( 2-57) is said to be completely 

state controllable if there exists a piecewise-constant control vector u(kT) defined over a 

finite number of sampling periods such that, starting from any initial state, the state x(kT) 

can be transferred to any desired state x in at most n sampling periods. 

As is the case with linear continuous systems, a controllability matrix is used to test 

for the condition of complete state controllability. The controllability matrix S(T) of the 

linear time-invariant discrete system given in (2-59) is defined as 

S(T) = [G(T)   F(T)G(T)   •••   Fn-'(T)G(T)]. 

(2-61) 

The following theorem is used to test for the condition of complete state 

controllability for the class of linear time-invariant discrete systems [23]: 

Theorem 2.1 The linear time-invariant discrete system given by (2-59) is completely 

state controllable, if 

rank[S(T)] = n. 

(2-62) 
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A controllability theorem and the associated controllability matrix have yet to be 

developed for the class of linear time-varying discrete systems. Chapter 4 of this report will 

address the concept of controllability for this class of systems. 

2.3.2. Equivalence Transformations 

The use of equivalence transformations is an important technique in the design of 

linear time-invariant discrete control systems. Several techniques exist to transform such 

systems into particular canonical forms. The controllable canonical, observable canonical, 

and Jordan canonical forms are the most widely used methods available [25]. Such methods 

do not currently exist for the class of linear time-varying discrete systems. Chapter 5 of this 

report will address equivalence transformations for this class of systems. 

2.3.3. Stabilization of Linear Discrete Systems 

The concept of stability is important in the design of linear time-invariant discrete 

systems. Several stabilization techniques exist to allow the control system designer to 

develop a closed-loop control system in which the poles can be arbitrarily assigned to values 

within the unit circle of the complex plane. Ackermann's formula [25] is one such method. 

Such methods do not currently exist for the class of linear time-varying discrete systems. 

Chapter 5 of this report will also address the concept of stabilization for this class of systems. 

2.4.    Conclusion 

This chapter presented relevant background information in the area of linear systems 

theory. Section 2.2 reviewed the research underlying the development of linear continuous 

systems. Section 2.3 presented relevant background information on linear discrete systems. 
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The concepts of controllability, canonical transformations, and stability were presented in- 

depth for the classes of linear time-invariant continuous and linear time-varying continuous 

systems. A limited discussion of these concepts was also provided for the linear time- 

invariant discrete class of systems. The remainder of this report focuses on developing these 

concepts for the class of linear time-varying discrete systems. 

25 



CHAPTER 3 
DISCRETIZATION OF LINEAR TIME-VARYING CONTINUOUS SYSTEMS 

3.1. Introduction 

Most modern control systems consist of both continuous and discrete components. 

The typical system utilizes continuous signals as inputs to a microprocessor-based control 

system. These continuous signals must be discretized (converted into discrete signals) to be 

useful in the digital world of the microprocessor. Discretization is typically accomplished 

through the application of a sample and zero-order hold device to each continuous input. In 

order to model a discretized system, equations that define the relationship between the given 

continuous and the resulting discrete system must be developed. 

3.2. Problem Statement 

Equations must be developed which model the discretization of a linear time-varying 

multivariable continuous system. The following statement defines the specific problem to be 

addressed in this chapter: 

Given a discretized system which results from the application of a sample and zero- 

order hold device to each input of a linear time-varying multivariable continuous 

system, derive equations to model the resulting discretized state equations (2-57) 

and (2-58) in terms of the associated continuous state equations (2-2) and (2-3). 

The equations that model the resulting discretized system are derived in section 3.3. 

These results are illustrated through the use of examples in section 3.4. (Note: A second 

solution to the above problem can also be found in Ogata [25].) 
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3.3.    Derivation of the Discretization Equations 

The derivation of the discretization equations begins with the solution to the time- 

varying continuous system, given in [24] as 

x(t) = 4>(t,t0)x0 + J<I»(t,T)B(T)u(T)dT . 

(3-1) 

Since the inputs u(t) are the outputs of the zero-order hold devices, 

u(t) = u(kT) 

(3-2) 

for kT<t<(k+l)T. Note that the initial condition at the beginning of the interval [kT,(k+l)T] 

is 

x0 = x(t0) = x(kT). 

To determine x(t) at the end of the interval [kT,(k+l)T], substitute (3-2),( 3-3), 

t0 = kT, 

and 

t = (k + l)T, 

into (3-1). This yields 

(3-3) 

(3-4) 

(3-5) 
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(k+l)T 

x((k + 1)T) = <D((k + l)T.kT)x(kT) +   J 4>((k + l)T,x)B(x)u(x)dx. 
kT 

(3-6) 

Since the input is constant between any two consecutive sampling periods, the input vector 

has the following property 

u(x) = u(kT), 

for kT<x<(k+l)T. Substituting (3-7) into (3-6) yields 

(3-7) 

x((k + 1)T) = <&((k + l)T,kT)x(kT) + 
(k+l)T 

J 4>((k + l)T,x)B(x)dx 
kT 

u(kT), 

(3-8) 

A comparison of (3-8) and (2-57) shows that the discrete state matrix can be defined as 

F(k,T) = *((k+l)T,kT) 

and the discrete input matrix can be defined as 

(k+l)T 

(3-9) 

G(k,T) =   J <D((k + l)T,x)B(x)dx. 
kT 

(3-10) 

The discretized output equation (2-58) is derived by substituting t=(kT) into the continuous 

output equation (2-3). The resulting output and direct transmission matrices are defined as 

C(kT) = [C(t)]t= = kT 

(3-11) 
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= kT 

and 

E(kT) = [E(t)]t= 

(3-12) 

Equations (3-9)-( 3-12) are referred to as the discretization equations. These 

equations define the resulting linear time-varying discrete system after the application of 

sample and zero-order hold devices to the inputs of a linear time-varying multivariable 

continuous system. It should be noted that the discretization equations, ( 3-9) and ( 3-10), are 

dependent on the state transition matrix of the continuous system. In other words, the 

resulting discrete system can only be modeled if the state transition matrix of the continuous 

system can be computed. It can also be shown that the discretization equations derived here 

are equivalent to those in [25]. 

3.4.    Examples 

The following examples are used to illustrate the concepts of lexicografixed 

controllability and the discretization of linear time-varying continuous systems. Each 

example begins with a given linear time-varying continuous system. The property of 

lexicografixed controllability is then tested. If the test shows that the given system is not 

lexicografixed controllability then a sample and zero-order hold is applied to each input and 

the dynamic equations of the resulting discrete system are computed using (3-9)-( 3-12). A 

step-by-step approach delineates the procedure necessary to discretize a given system. The 

Maple code used to solve these examples is included in Appendix A. 
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3.4.1.     Example 3-1: 

Consider a linear time-varying single-input-single-output continuous system with 

dynamic equations given as 

x(t) = 
-1   exp(-2t)' 

0 -1 
x(t) + 

1 

exp(l -1) 
u(t) 

(3-13) 

and 

y(t) = [exp(-2t)   -l]x(t) + u(t). 

(3-14) 

a)        Check to see if the given system is lexicografixedly controllable. From (2-18), the 

controllability matrix can be computed as 

M(t) = [M,(t)   M2(t)], 

(3-15) 

where 

M1(t) = B(t) = 
exp(l-t) 

(3-16) 

and 

M2(t) = -A(t)B(t) + -B(t) = 
at 

Substituting (3-16) and (3-17) into (3-15) yields 

l-exp(l-3t)' 

0 

(3-17) 
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M(t) = 
1 l-exp(l-3t)' 

exp(l -1) 0 

Computing the determinant of (3-18) yields, 

Mdet (t) = exp(2 - 4t) - exp(l -1). 

Equation ( 3-19) is plotted below. 

(3-18) 

(3-19) 

Mdetft) 

r"3       4      5 seconds t 

Figure 3-1 Determinant as a function of time 

Figure 3-1 shows that the determinant of M(t) is zero for t=0.333 seconds. Therefore, from 

definition 2.3, the system is not lexicografixedly controllable. 

b)        Check to see if the state matrix satisfies the commutative property. Solving (2-8) 

yields 
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A(t)     A(x)dT  =      A(x)dx A(t) 
t 

J A(T)dT = 
t 

J A(x)dx 
L'o        J L «o        J 

_ 
(l 

t-t0     r 
V2 

0 

^■- t+ t0 jexp(-2t)-|exp(-2t0) 

t-t„ 

(3-20) 

Based on ( 3-20), it is obvious that the state matrix satisfies the commutative property, 

c)        Compute the state transition matrix. Since A(t) satisfies the commutative property, 

the state transition matrix is computed directly from (2-9). 

<D(t,t0) = exp J A(x)dT exp -t+t0   -exp(2t)--exp(2t0) 

0 t+tr 

exp(-1 +10)   -exp(-t -10) - -exp(-3t +10) 

0 exp(-t+t0) 

(3-21) 

d)       Assume that a sample and zero-order hold is applied to the input of the 

continuous system. Use the discretization equations to model the resulting discrete 

system. From ( 3-9), the discretized state matrix is computed as 

F(k,T) = 0((k + l)T,kT) = exp(- T)   -exp(-(l + 2k)T)- -exp(-(3 + 2k)T) 

0 exp(- T) 

(3-22) 

and from (3-10) the discretized input matrix is computed as 

32 



(k+l)T 

G(k,T) =   J <D((k + l)T,x)B(T)dx 
kT 

1        O  T 
4    2 

exp(l - 3kT - 3T) +1 - exp(-T)+- exp(l - 3kT - T) 

Texp(l-kT-T) 

(3-23) 

From (3-11) and (3-12) the discrete output and direct transmission matrices are computed as 

C(kT) = [exp(-2kT)   -l] 

(3-24) 

and 

E(kT) = L 

(3-25) 

The dynamic equations of the resulting system can be obtained by substituting 

(3-22)-( 3-25) into (2-57) and (2-58). 

3.4.2.    Example 3-2: 

Consider a linear time-varying multivariable continuous system with dynamic 

equations given as 

x(t) = 
exp(-1)        0 

0        exp(-1). 
x(t) + 

1   1 
1   1 

u(t) 

(3-26) 

and 

y(t) = [t   l]x(t) + [t   l]u(t). 

(3-27) 

33 



a)        Check to see if the given system is lexicografixedly controllable. From (2-18), the 

controllability matrix can be computed as 

M(t) = [M1(t)   M2(t)], 

where 

M,(t) = B(t) = 
1   1 

1   1 

and 

M2(t) = -A(t)B(t) + -B(t) = - 
dt 

- exp(- t)   - exp(- t) 

- exp(- t)   - exp(- t). 

Substituting (3-29) and (3-30) into (3-28) yields 

M(t) = 

exp(-1)        0 

0        exp(-1). 
n r d 

+— 
"l   l" 

Li ij dt Li iJ 

1   1   - exp(- t) 

1   1   - exp(- t) 

- exp(- t) 

- exp(- t). 

(3-28) 

(3-29) 

(3-30) 

(3-31) 

From (3-31) it is obvious that the determinant of M(t) is zero for all t. Therefore M(t) does 

not have full rank and the.given system is not lexicografixedly controllable. 

b) Check to see if the state matrix satisfies the commutative property of (2-8). 

Since A(t) is a diagonal matrix, it satisfies the commutative property [ 6]. 

c) Compute the state transition matrix. Since A(t) satisfies the commutative property, 

the state transition matrix is computed directly from (2-9). 
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O(t,t0) = exp J A(T)dT 
L'o 

exp (- exp(- t) + exp(- t0)) 0 

0 exp(-exp(-t) + exp(-t0)) 

(3-32) 

d)        Assume that a sample and zero-order hold is applied to each input of the 

continuous system. Use the discretization equations to model the resulting discrete 

system. From (3-9), the discretized state matrix is computed as 

F(k,T) = 0>((k + l)T,kT) 

exp(-exp(-(k+l)T) + exp(-kT)) 0 

0 exp (- exp(- (k + l)T) + exp(- kT)) 

(3-33) 

and from (3-10) the discretized input matrix is computed as 

(k+l)T 

G(k,T)=   J <D((k+l)T,T)B(T)dT = 
kT 

a(k,T)   a(k,T)' 

a(k,T)   a(k,T) 

(3-34) 

where 

a(k T) = Ei(1 ~exPHk + TO) ~ Ei(l-exp(-kT)) 
exp(exp(-(k + l)T)) 

(3-35) 

and the function Ei(n,x) is defined in [ 14] as 

7exp(-xt) 
Ei(n, x) = J ^—^dt   for Re(x) > 0. 

(3-36) 

From (3-11) and (3-12) the discrete output and direct transmission matrices are computed as 
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C(kT) = [kT   l] 

(3-37) 

and 

(3-38) 

E(kT) = [kT   1]. 

The dynamic equations of the resulting system can be obtained by substituting 

( 3-33)-( 3-38) into (2-57) and (2-58). 

3.4.3.    Example 3-3: 

Consider a linear time-varying multivariable continuous system with state equation 

given by 

x(t) = 

2-4exp(-2t)   0 

0 1 

0 0 

0 "l   0" 

0 
3t + l 

2(t + l)J 

x(t) + 1    1 

0   1 

u(t). 

(3-39) 

a)        Check to see if the given system is lexicografixedly controllable. From (2-18), the 

controllability matrix can be computed as 

M(t) = [M,(t)   M2(t)   M3(t)], 

(3-40) 
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where 

1   0 

M,(t) = B(t) = 1    1 

.0   1. 

(3-41) 

M2(t) = -A(t)B(t) + —B(t) = 
at 

2 + 4exp(-2t) 0 

-1 -1 
"(3t -1) 0 
2(t+l). 

and 

(3-42) 

M3(t)=-A(t)Q2(t) + -Q2(t) 
dt 

(4-24exp(-2t)> 

+ 16exp(-4t)   J 

1 
( 

0 

1 

0 
9tz - 6t-7 

4(t+l)2 

^ 

(3-43) 

Substituting (3-41), (3-42), and (3-43) into (3-40) yields 

M(t) = 

I 0   -2 + 4exp(-2t) 

II -1 

0   1 0 

0 

-1 
-3       1 

Tt+2 
t+1 

4-24exp(-2t) 

+ 16exp(-4t) 
1 

0 

0 

1 

9t2 - 6t - 7 

4(t+l)2   . 

(3-44) 
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This system is lexicografixedly controllable if the determinant of any matrix consisting of any 

combination of any three column vectors of M(t) is non-zero for all time t [21]. There are 20 

matrices that can be formed which consist of three column vectors of M(t). Since the 

determinants of all 20 matrices were found to be non-zero for all t, the system is not 

lexicografixedly controllable in continuous time. 

b) Check to see if the state matrix satisfies the commutative property of (2-8). 

Since A(t) is a diagonal matrix, it satisfies the commutative property [ 6]. 

c) Compute the state transition matrix. Since A(t) satisfies the commutative property, 

the state transition matrix is computed directly from (2-9). 

O(t,t0) = exp 

exp 

J A(x)dT 
'o 

r2t+2exp(-2t)       ^ 

,-2t0-2exp(-2t0)J 
0 exp(t-t0) 

0 

0 0 

0 

0 

(t0 +1)2      (3      3    ^* 

(t+iy j 

(3-45) 

d)        Assume that a sample and zero-order hold is applied to each input of the 

continuous system. Use the discretization equations to model the resulting discrete 

system. From (3-9), the discretized state matrix is computed as 
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F(k,T) = 0((k+l)T,kT) 

exp 
2exp(-2(k+l)T) 

+2T-2exp(-2kT) 
0 

0 

exp(T) 

0 

0 

0 
(kT+1) (3   \ 

0       —^ ^exp -T 
(kT + T+1)2      U   ) 

(3-46) 

and from (3-10) the discretized input matrix is computed as 

(k+l)T 

G(k,T) =   J <D((k + l)T,x)B(T)dx = 
kT 

goo(T) 0 

exp(T)-l   exp(T)-l 

0 g2,(T) 

(3-47) 

where 

goo (T) = -exp(2(k + 1)T) - ^-exp(-exp(-2kT) + kT + T + exp(-2(k + 1)T)) 

(3-48) 

and 

2(30kT + 29 + 9k2T2)      f3   \   2(-30kT-9T2-29-9k2T2-18kT2-30T) 
g2. (T) = - ^exp ^T + -i - 1. 

27(kT + T + l)2 U   J 27(kT + T + l)2 

(3-49) 

The state equation of the resulting system can be obtained by substituting ( 3-46)-( 3-47) into 

(2-57). 
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3.5.     Conclusion 

Linear time-varying continuous systems are discretized through the application of a 

sample and zero-order hold to each input of the system. Equations modeling the resulting 

discrete system are derived in section 3.3. These results show that the discrete model is 

dependent on the state transition matrix of the given continuous system. That is, if the state 

transition matrix of a continuous system can be computed, then a discretized system can be 

modeled through the application of the discretization equations derived in this chapter. The 

discretization process was successfully demonstrated in section 3.4 through the use of several 

examples. 
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CHAPTER 4 
CONTROLLABILITY OF LINEAR TIME-VARYING DISCRETE SYSTEMS 

4.1. Introduction 

The property of controllability deals with the existence of a control vector that can 

cause the system's state to reach some arbitrary state [25] in a finite period of time. A given 

system must possess the property of controllability if state feedback and stabilization 

techniques are to be used to control the system. For linear continuous systems, these 

techniques rely heavily on the continuous controllability matrix (2-18) which is defined for 

both time-invariant and time-varying continuous systems. For discrete systems, these 

techniques rely heavily on the discrete controllability matrix (2-61) which is defined only for 

the time-invariant discrete class of systems. However, in the case of linear time-varying 

discrete systems, a controllability matrix has not yet been defined. Consequently, state 

feedback and stabilization techniques do not exist for this class of systems. 

4.2. Problem Statement 

In order to develop state feedback and stabilization techniques for linear time-varying 

discrete systems, a controllability theorem and its corresponding controllability matrix must 

be developed. The following statement defines the specific problem to be solved in this 

chapter: 

Given definition 2.5 which describes the concept of complete state controllability for 

linear discrete systems, derive a controllability matrix and develop a controllability 
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theorem which can be used to test for the condition of complete state 

controllability. 

A controllability matrix for this class of systems is derived and the associated 

controllability theorem is developed in section 4.3. These results are illustrated through the 

use of examples in section 4.4. 

4.3.    Controllability Matrix and Theorem for the Class of Linear Time-Varying 
Discrete Systems 

In this section a new controllability theorem for linear time-varying multivariable 

discrete systems is introduced and its associated controllability matrix is derived. These 

results represent advances in the theory of the control of linear discrete systems. 

Using definition 2.5 which defines complete state controllability for linear discrete 

systems, a necessary and sufficient condition for the complete state controllability of a linear 

time-varying multivariable discrete system is derived. The derivation begins by finding the 

solution to the discrete state equation (2-57). 

The solution of (2-57) can be found by recursion, as follows: 

For k=0, 

x(T) = F(0,T)x(0) + G(0,T)u(0). 

(4-1) 

Fork=l, 

x(2T) = F(l,T)F(0,T)x(0) + F(l,T)G(0,T)u(0) + G(l,T)u(T). 

(4-2) 

Fork=2, 
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x(3T) = F(2,T)F(l,T)F(0,T)x(0) + F(2,T)F(l,T)G(0,T)u(0) 
+ F(2,T)G(l,T)u(T) + G(2,T)u(2T). 

(4-3) 

For k=3, 

x(4T) = F(3,T)F(2,T)F(l,T)F(0,T)x(0)+ F(3,T)F(2,T)F(l,T)G(0,T)u(0) 
+ F(3,T)F(2,T)G(l,T)u(T) + F(3,T)G(2,T)u(2T) + G(3,T)u(3T). 

Repeating this procedure, gives 

x(kT) = [F(k- l,T)F(k- 2,T)...F(0,T)]x(0) 
+ Sj="Ö [[F(k-l,T)F(k-2,T)...F(j+l,T)]G(jT)u(jT). 

The solution to the state equation (2-57) at the nth sampling period can be obtained by 

substituting k=n into (4-5). This yields 

x(nT) = [F(n- l,T)F(n- 2,T)...F(0,T)]x(0) 

+ X£o "F(n~ l»T)F(n- 2,T)...F(j+ l,T)]G(jT)u(jT). 

Rewriting (4-6) yields 

x(nT) - [F(n - l,T)F(n - 2,T)... F(0,T)]x(0) 

= £ ^o [p(n " ^'HFCn - 2,T)...F(j + l,T)p(j,T)u(jT) 

= [F(n - l,T)F(n - 2,T)...F(l,T)]G(0,T)u(0) 
+[F(n - l,T)F(n - 2,T).. .F(2,T)]G(l,T)u(T) 
+[F(n - l,T)F(n - 2,T).. .F(3,T)]G(2,T)u(2T) 
+...+G(n-l,T)u((n-l)T) 

which can be written in matrix form as follows, 

(4-4) 

(4-5) 

(4-6) 

(4-7) 
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x(nT) - [F(n - 1, T)F(n - 2, T)... F(0, T)]x(0) 

G(n-1,T) lTu((n-l)T)' 

F(n - 1, T)G(n - 2, T) u((n - 2)T) 

.[F(n - 1,T)F(n - 2, T)... F(l, T)]G(0, T)J |_      u(0) 

(4-8) 

The controllability matrix S(T) for the class of linear time-varying multivariable discrete 

systems is now defined as 

S(T) = 

G(n-1,T) 

F(n-l,T)G(n-2,T) 

[F(n- l,T)F(n- 2,T)...F(1,T)]G(0,T). 

In compact form, the controllability matrix (4-9) can be written as 

S(T) = [S0(T)   S,(T)   ...   S^CT)], 

where 

S0(T) = G(n-l,T), 

and 

Si(T) = f[F(n-j,T) 
L j=i 

G(n-l-i,T). 

Since the input matrix G(k,T) is an (nxp) matrix, each of the matrices 

(4-9) 

(4-10) 

(4-11) 

(4-12) 
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S0(T),S](T),...,Sn j(T) of (4-10) is an (nxp) matrix. Therefore, the controllability matrix 

S(T) is an (nxnp) matrix. For time-invariant discrete systems, the time-varying controllability 

matrix (4-10) reduces to the time-invariant controllability matrix (2-61). 

A new controllability theorem will now be introduced and subsequently proven. 

Theorem 4.1 

The state equation (2-57) of a linear time-varying multivariable discrete system is 

completely state controllable, if and only if the rank of the (nxnp) controllability 

matrix is n at some sampling period T. 

To prove the necessity of theorem 4.1, assume that the state equation is state 

controllable and then show that the controllability matrix has full rank. The state transition 

equation of the discrete system can be obtained by substituting (4-9) into (4-8). 

x(nT) - [F(n - l,T)F(n - 2,T)... F(0,T)]x(0) = S(T) 

u((n-l)T) 

u((n-2)T) 

.     u(0)     . 

(4-13) 

If the left hand side of (4-13) is represented as an (nxl) vector X(nT) then (4-13) can be 

written as 

X(nT) = S(T)U(nT). 

(4-14) 

From definition 2.5, if the system is assumed to be completely state controllable, then 

every initial state X(0) can be transferred by unconstrained controls U(nT) to any final state 

X(nT) in a finite number of sampling periods. Thus the problem can be reduced to the 
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following: Given S(T) and every vector X(nT) in the n-dimensional state space, solve for the 

controls U(nT). Since (4-14) represents n simultaneous linear equations, these equations 

must be linearly independent for solutions to exist. The controllability matrix S(T) must, 

therefore, have full rank (equal to n) for solutions to exist. Necessity has been proven. 

Contradiction is used to prove the sufficiency of the theorem. Assume that the 

controllability matrix does not have full rank and that the system is completely state 

controllable. If the controllability matrix does not have full rank, then, from the theory of 

linear equations, S(T) does not have n linearly independent column vectors. If S(T) does not 

have at least n linearly independent column vectors, then, given X(nT) and U(nT), the set of 

simultaneous linear equations (4-14) cannot be solved. This means that unconstrained 

controls capable of transferring every initial state X(0) to any final state X(nT) cannot be 

found. This contradicts the assumption that the system is completely state controllable. 

Sufficiency has been proven. Consequently, the full rank condition given in theorem 4.1 is 

found to be both a necessary and sufficient condition for complete state controllability. The 

proof is complete. 

4.4.    Examples 

The following examples are used to illustrate Theorem 4.1 and its corresponding 

controllability matrix. The Maple code used to solve these examples is included in 

Appendix A. 
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4.4.1.    Example 4-1: 

Consider a linear time-varying single-input-single-output discrete system with state 

and input matrices given by (3-22) and (3-23). 

a)        Compute the controllability matrix of the given system. From (4-10), the 

controllability matrix can be computed as 

S(T) = 

1-l4+fjeXp(l"6T) 

_exp(_T)+£^I) 
Texp(l-2T) 

exp(-T)- 
exp(l-4T) 

•exp(-2T) 

exp(l-2T)    Texp(l-6T) 
4 2 

Texp(l-2T) 

(4-15) 

b)        Determine whether the given system is completely state controllable. Computing 

the determinant of the controllability matrix (4-15) yields, 

Sdet(T) = Texp(l-2T)+Texp(l-4T)-TeXp(2"4T) 

_Texp^_2Texp(i_3T)+Texp(2-6T) 

(4-16) 

Theorem 4.1 states that a given discrete system is completely state controllable if and only if 

the controllability matrix has full rank. It is well known that a matrix which is dependent on 

the variable T has full rank at values of T for which the determinant is non-zero. Plotting 

(4-16) as a function of the sampling period T yields the graph depicted in Figure 4-1. 
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3.5 seconds 

Figure 4-1 Determinant as a Function of Sampling Period (Example 4-1) 

Figure 4-1 shows that the value of Sdet(T) crosses the zero axis (i.e., equals exactly 

zero) at two values of T and also approaches zero as T increases. Solving (4-16) shows that 

Sdet(T)=0, and the system is therefore uncontrollable, for sampling periods of T=0 and 

T=0.343 seconds. Theoretically, the system is controllable at any other sampling period. 

However, choosing a sampling period at which Sdet(T) is very close to zero is undesirable 

because the inverse of Sdet(T) would then approach infinity and the system would be ill- 

defined. For practical purposes it is desirable to select a sampling period such that 

Sd« (D >|10"3| • Using this criteria, the range of acceptable sampling periods can be computed 

as 

0.08 < T < 0.33 seconds 
0.35 < T < 4.72 seconds. 

(4-17) 

c)        Demonstrate that the given system is completely state controllable. Assume a 

sampling period of T=0.5 seconds, an initial state at k=0 of 
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x0(0)" 
x,(0) 

2.0 

5.0 

and a desired state at k=n=2 of 

x0(2)' 
x,(2) 

05 

25 

At a sampling period of T=0.5 seconds, the state equation becomes 

x0(k + l)' 

x,(k + l) 

0.6065306597   0.1917002498 exp(-k)' 

0 0.6065306597 

0.108914879 exp(-1.5 k)+0.3934693403" 

0.8243606355exp(-05k) 

x0(k)' 

x,(k) 

u(k). 

Substituting k=0 into (4-20) yields, 

x0(D' 
x,(D 

'2.171562568 +05023843282 u(0)' 

3.032653299 + 0.8243606355 u(0) 

Substituting k=l into (4-20) yields 

x0(2)' 
x,(2) 

1530989814 + 0.3628475375 u(0) + 0.4177715590 u(l)' 

1.839397206 + 05000000001 u(0) + 05000000001 u(l) 

(4-18) 

(4-19) 

(4-20) 

(4-21) 

(4-22) 

By substituting (4-19) into (4-22) and then solving the resulting set of simultaneous linear 

equations, it can be shown that the control vector 
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'u(O)' 

u(l) 

28.82075800' 

-27.49955241 

(4-23) 

will produce the desired state (4-19). Hence, by definition 2.5 the given discrete system is 

completely state controllable. 

4.4.2.    Example 4-2: 

Consider a linear time-varying multiple-input discrete system with state and input 

matrices given by (3-33) and (3-34). 

a)        Compute the controllability matrix of the given system. From (4-10), the 

controllability matrix can be computed as 

S(T) = 
a(T)   a(T)   ß(T)   ß(T)' 
a(T)   a(T)   ß(T)   ß(T). 

(4-24) 

where 

a(T) = Ei(l ,-exp(-2T)) - Ei(l,-exp(-T)) 
exp(exp(-2T) 

(4-25) 

and 

ß(T) = (Ei(l ,-exp(-T))-Ei(l,-l))exp(-exp(-T))exp(-exp(-2T)+exp(-T)). 

(4-26) 
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b)        Determine whether the given system is completely state controllable. By 

inspection of (4-24), it is obvious that the determinant of the controllability matrix equals 

zero for all sampling periods. Hence, the discrete system is not completely state controllable. 

4.4.3.    Example 4-3: 

Consider a linear time-varying multiple-input discrete system with state and input 

matrices given by (3-46) and (3-47). 

a)        Compute the controllability matrix of the given system. From (4-10), the 

controllability matrix can be computed as 

S000   S001    Sl00   Sl01    S200   S20, 

S(T)=|S0li0    S0U    Sl10    SI,,    S210    S2ItI 

l_S02,0   S02il    Sl2i0   Sl2jl    S220   S2 2,1 

where the matrix elements of S(T) are given as 

S000 = -exp(6T) - -exp(-2exp(-4T) + 6T + 2exp(-6T)), 

S0I,0=S0u=exp(T)-l, 

S02,o = S0W = Sl0jl = Sl2>0 = S22i0 = S20il =0, 

(4-27) 

(4-28) 

(4-29) 

(4-30) 
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sow = 
(72T2 +120T + 58)exp[ —)-2(81T2 +90T + 29) 

27(3T + 1)2 

(4-31) 

1      f2T + 2exp(-6T)Y 
S1- = 4eXV2exp(-4T) exP(4T>"exP 

f-2exp(-2T) + 4TYl 
+2exp(-4T) 

(4-32) 

Slli0=Slu=exp(TX-l + exp(T)), 

(4-33) 

Slw = 

2expgT) 

27(3T+1) 
^-f ((9T2 + 30T + 29)expf-T j - (36T2 + 60T + 29)1, 

(4-34) 

S20 0 = - (exp(2T) - exp(-2 + 2T + 2 exp(-2T)))exp(4T + 2 exp(-6T) - 2 exp(-2T)), 

(4-35) 

S2li0 = S2W = exp(2TX-l + exp(T)), 

(4-36) 

and 

S221 =—expV   ) [ 9T2 + 30T + 29-29 expf-TI 2,1    27(3T + l)2l PU   J, 

(4-37) 

(b)       Determine whether the given system is completely state controllable. Theorem 

4.1 states that a given discrete system is completely state controllable if and only if the 
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controllability matrix has full rank. Since (4-27) is a (3x6) matrix, the controllability matrix 

has full rank at values of T for which the determinant of any (3x3) sub-matrix is non- zero. A 

(3x3) sub-matrix is formed by taking the first three column vectors of (4-27). 

Ssub(T) = 

S000   S001    Sl00 

S01>0    SO,,    Sl1>0 

so2i0  so2i]   Sl20 

(4-38) 

Computing the determinant of (4-38) yields, 

_(-l + exp(DK 
Saet(T) = 8 IT2 -90T-29 + (36T2 + 60T + 29)exp[-T 

54(3T+l) 

^-exp(7T) + exp(7T - 2exp(4T) + 2exp(6T))^ 

+exp(-2 exp(4T) + 6T + 2 exp(6T)) 

- exp(6T + 2 exp(-6T) - 2 exp(-2T)) 

(4-39) 

Plotting (4-39) as a function of the sampling period T yields the graph depicted in Figure 4-2. 

0.5 seconds 

Figure 4-2  Determinant as a Function of Sampling Period (Example 4-3) 
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Figure 4-2 shows that the value of Sdet(T) crosses the zero axis (i.e., equals exactly 

zero) at two values of T and approaches infinity as T increases. Solving (4-39) shows that 

Sdet(T)=0, and the system is therefore uncontrollable, at sampling periods of T=0 and 

T=0.363 seconds. Theoretically, the system is controllable at any other sampling period. 

However, choosing a sampling period at which Sdet(T) is very close to zero or infinity is 

undesirable because the inverse of Sdet(T) would then approach infinity or zero, respectively, 

and the system would be ill-defined. For practical purposes it is desirable to select a 

sampling period such that 10~3 < S^ (T) < 106 . Using this criteria, the range of acceptable 

sampling periods can be computed as 

0.17<T<0.35seconds 

0.37 < T < 2.40 seconds. 

(4-40) 

c)        Demonstrate that the given system is completely state controllable. Assume a 

sampling period of T=0.5 seconds, an initial state at k=0 of 

"x0(0)" "2.0" 

x,(0) = 5.0 
_x2(0)_ 1.0 

(4-41) 

and a desired state at k=n=3 of 
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"x0(3)~ "05" 

x, (3) = 2.5 

_x2 (3)_ 0_ 

(4-42) 

At a sampling period of T=0.5 seconds, the state equation becomes 

x(k +1) = F(k) x(k) + G(k) u(k), 

(4-43) 

where 

F(k) = 

exp(l + 2 exp(-k -1) - 2 exp(-k)) 0 

0 1.648721271 

0 

0 

0 0 2.117000017 (k + 2)2 

(k + 3)2 

(4-44) 

and 

G(k) = 

'0.6795704570exp(k) ^ 

(l - exp(-1.264241118exp(-k))) 

0.648721271 

0 

0 

0.648721271 
^0.1861666695k2 + 0.907777797k^ 

L+1.12170374 J 
0.25k2 + 15k + 2.25 

(4-45) 

Substituting k=0 into (4-43) yields, 
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"x0(D" 
x,(D = 

_x2(l)_ 

1535576779 + 0.4876233596u0(0) 

8.243606355 + 0.64872127 l(u0(0) + u,(0)) 

0.9408888964 + 0.4985349956u, (0) 

(4-46) 

Substituting k=l into (4-43) yields, 

x0(2) 

x,(2) = 

_x2(2)_ 

2.621686325 + 0.8325181203u0(0) + 0.687035113u0(l) 

1359140915+ 1.069560558(u0(0) + u, (0))+0.64872127 l(u0(l) + u,(l)) 

1.120422268 + 05936617094u, (0) + 05539120516u, (1) 

(4-47) 

Substituting k=2 into (4-43) yields, 

x0(3)' 

x,(3) 

x2(3) 

' 6.005773861 +1.907137218u0(0) + 1.573863922u0(l) + 0.789661357u0(2) ' 
'22.40844537 + 1.763407243(u0 (0) + u, (0)) ") 

<+1.069560558(u0(l) + u1(l))+0.64872127 l(u0 (2)+ u1(2))> 

1518037735 + 0.8043403834u, (0) + 0.7504843666u, (1) + 0589108162u, (2) 

(4-48) 

By substituting (4-42) into (4-48) and then solving the resulting set of simultaneous linear 

equations, it can be shown that the following set of control inputs 

u0(l) = u0(l), u,(l)= u,(l), u0(2)= u0(2), 

u0(0) = -2.88693116-0.8252494404u0(l)-0.4140558684u0(2), 

u, (0) = -14.97818061 + 0.4394459752u0(l)+ 0.09277687566u0(2)- 0.2770198232u, (l), 

u1(2)=17.87365798-05999987219u0(l)-0.126673152u0(2)-0.8957033186u1(l) 

(4-49) 

will produce the desired state (4-42). Since the set of simultaneous linear equations contains 

three equations and six unknowns, the solution set (4-49) is not unique. The control system 

designer can assign any value to u0(l), ui(l), and u0(2). The required values for u0(0), ui(0), 
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and ui(2) can then be computed by substituting the selected values of uo(l), ui(l), and uo(2) 

into (4-49) and solving the resulting set of equations. For example, if the following set of 

inputs is assigned, 

{u0(l) = 25,u0(2) = 0,Ul(l) = 2i}, 

(4-50) 

then it can be shown that inputs of 

{u, (2) = 14.134, u, (0) = -14572, u0(0) = -4.950} 

(4-51) 

will produce the desired state (4-42). Hence, by definition 2.5 the given discrete system is 

completely state controllable. 

4.5.     Conclusion 

Until now, the concept of controllability had not been applied to linear time-varying 

multivariable discrete systems. The results of the original research on the controllability of 

this class of systems are presented in this chapter. A new controllability theorem is 

developed and its associated controllability matrix is derived in section 4.3. A proof 

demonstrating the full rank condition of the controllability matrix as a necessary and 

sufficient condition for the system to be completely state controllable is provided. The 

validity of the controllability matrix and theorem is demonstrated in section 4.4 through the 

use of several examples. These examples successfully demonstrate that the state variables of 

a linear time-varying discrete system which is completely state controllable can be transferred 
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to any desired state in a finite number of sampling periods. The controllability theorem and 

matrix developed in this chapter represent advances in the theory of linear system control. 
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CHAPTER 5 
STABILIZATION OF LINEAR TIME-VARYING DISCRETE SYSTEMS 

5.1.    Introduction 

State feedback techniques and controllability concepts play important roles in the 

stabilization and optimization of linear systems. If the state equation of a linear system is 

controllable, then all its eigenvalues can be arbitrarily assigned through the use of state 

feedback [ 6]. This flexibility in eigenvalue assignment allows the control system designer to 

stabilize the system by changing unstable eigenvalues (those with non-negative real parts) 

into stable eigenvalues (those with negative real parts). 

Extensive research has been conducted in the area of state feedback for certain classes 

of linear continuous systems [ 3]-[ 5], [17], [27]. Nguyen developed a state feedback 

technique to transform linear time-varying continuous systems which satisfy the property of 

lexicografixed controllability into equivalent time-invariant systems for which the 

eigenvalues can be arbitrarily assigned [21]. State feedback techniques have also been 

developed for linear time-invariant discrete systems which satisfy the property of complete 

state controllability [25]. However, in the case of linear time-varying discrete systems, state 

feedback techniques have not been developed. Now that the concept of controllability has 

been extended to this class of systems, state feedback techniques can also be developed. This 

chapter focuses on the development of state feedback techniques for a class of linear time- 

varying discrete systems. 
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5.2.    Problem Statement 

In order to stabilize a linear time-varying discrete system, state feedback techniques 

must be developed. The following statement defines the specific problem to be solved in this 

chapter. 

Given a linear time-varying discrete system which satisfies the property of complete 

state controllability, develop a state feedback technique for which the closed-loop 

feedback system is equivalent to an asymptotically stable time-invariant system for 

which the eigenvalues can be arbitrarily assigned. 

The scope of the problem addressed is reduced by considering only the class of linear 

time-varying single-input-single-output discrete systems which have two state variables. The 

approach taken to solve this problem is similar to that taken in [21] for linear time-varying 

continuous systems. First, in section 5.3, a canonical transformation is derived which 

transforms the state equation of the given system into an equivalent canonical state equation. 

Then, in section 5.4, a state feedback method is developed which transforms the canonical 

state equation into an equivalent time-invariant state equation for which the eigenvalues can 

be arbitrarily assigned. Eigenvalues which asymptotically stabilize the system are then 

assigned. These results are illustrated through the use of an example in section 5.5. 

5.3.    Canonical Transformation for a Class of Linear Time-Varying Discrete Systems 

Three steps are necessary in the development of a canonical transformation for the 

class of linear time-varying single-input-single-output discrete systems which have two state 

variables: 
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1) The concept of an equivalence transformation for this class of systems must be 

defined. 

2) Equations describing the equivalent state and input matrices must be derived. 

3) An equivalence transformation converting the given system into the desired canonical 

form must be derived. 

5.3.1.    Definition of Equivalence Transformation 

Consider a linear time-varying single-input-single-output discrete system which has 

two state variables. Such a system can be modeled using the following state equation, 

x(k + 1) = F(k)x(k) + G(k)u(k)„ 

The state and input matrices of (5-1) are represented by 

F(k) = 
fooCk)   f01(k)' 

Lf10(k)   fn(k). 

(5-1) 

and 

(5-2) 

G(k) = goOO 
.g,(k). 

If there exists a nonsingular matrix Q(k) such that 

x(k) = Q(k)x(k), 

(5-3) 

(5-4) 
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then the system described by 

x(k + 1) = F(k)x(k) + G(k)u(k) 

(5-5) 

is said to be equivalent to the original system (5-1) and the matrix Q(k) is said to be an 

equivalence transformation. 

5.3.2.    Derivation of the Equivalent State and Input Matrices 

The derivation begins by calculating the equivalent state vector (5-4) at the k+lth 

sampling instant: 

x(k + l) = Q(k + l)x(k + l). 

(5-6) 

Substituting the discrete state equation (5-1) into (5-6) yields 

x(k + 1) = Q(k + l)[F(k)x(k) + G(k)u(k)] 

= Q(k + l)F(k)x(k) + Q(k + l)G(k)u(k). 

(5-7) 

Solving the equivalent state vector (5-4) for x(k) and substituting the result into (5-7) yields 

x(k +1) = Q(k + l)F(k)Q_1(k)x(k) + Q(k + l)G(k)u(k). 

(5-8) 

The equivalent state equation (5-5) can be obtained by substituting 

F(k) = Q(k + l)F(k)Q"1(k) 

and 

(5-9) 
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G(k) = Q(k + l)G(k) 

(5-10) 

into (5-8). Equations (5-9) and ( 5-10) define the equivalent state and input matrices. 

5.3.3.    Derivation of the Equivalence Transformation 

In order to derive an equivalence transformation, it is necessary to first identify the 

desired canonical form. For this derivation, the discrete equivalent of the canonical form 

obtained by the application of Nguyen's second canonical transformation (2-32) is selected as 

the desired canonical form. This equivalence transformation converts the given discrete 

system (5-1) into an equivalent system in which the state and input matrices have the 

following canonical form, 

F(k) = foo(k)   f«(k) 
1 0 

and 

G(k) = 

Using (4-10), the controllability matrix of (5-1) is computed as 

S = [G(n-l)   F(n-l)G(n-2)]. 

Substituting k=n into (5-13) yields, 

(5-11) 

(5-12) 

(5-13) 
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S(k) = 
g0(k-l)    f00(k-l)g0(k-2) + f01(k-l)g1(k-2)' 

,g,(k-l)    f10(k-l)g0(k-2) + f11(k-l)gI(k-2). 

Soofle)   S01(k)" 

S10(k)   Sn(k)/ 

The inverse of (5-14) is calculated as 

S-'(k) = = 
1_ S,,(k)    -S01(k) 

S00(k)Sn(k)-S10(k)S01(k)|_-SIO(k)    SooCk). 

(5-14) 

Defining the row vector ß(k) as the bottom row of (5-15) yields, 

ß(k) = 
-S10(k) Soo(k) 

S00(k)S1I(k)-SIO(k)S01(k)    S00(k)SI1(k)-SIO(k)S01(k). 

(5-15) 

= [ß0(k)   ß,(k)]. 

The desired equivalence transformation Q(k) is then defined as 

Q(k) = 
Q00(k)   Q01(k) 

LQ10(k)   Q„(k). 

(5-16) 

The inverse of (5-17) is computed as 

Q„(k) 

Q-'(k) = 

-Qo.(k) 

(5-17) 

Q00(k)Q„(k) - Q01(k)Q10(k)    Q00(k)Qu(k) - Q0I(k)Q10(k) 
 -Q.o(k) Qoo(k)  

LQ00(k)Q1I(k)-Q01(k)Q10(k)    Qoo(k)Qn(k)-Q01(k)Q10(k)J 

(5-18) 

Substituting ( 5-9) into (5-11) and (5-10) into (5-12) yields 
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F(k) = Q(k+l)F(k)Q-'(k) = 
foo(k)   f0I(k) 

1 0 

(5-19) 

and 

G(k) = Q(k + l)G(k) = 

(5-20) 

The two elements in the bottom row of (5-19) and the two elements of ( 5-20) represent the 

following set of four simultaneous linear equations, 

Q„(k)QIO(k + l)f00(k) + Qn(k)Qn(k + l)fIO(k) 

-Ql0(k)Q10(k+l)f01(k)-Q10(k)Qll(k + l)f11(k) 
Qoo(k)Q„(k)-QOI(k)Q10(k) = 1, 

^Q01(k)Q10(k + l)f00(k) + Q0I(k)Q„(k+ l)f10(k) ^ 

-Qoo(k)Q10(k + l)f01 (k) - Q00(k)Q11 (k + l)f„ (k) 

Qoo(k)Qn(k)-QOI(k)QIO(k) 

Q00(k)g0(k-l) + Q01(k)g1(k-l) = l, 

= 0, 

and 

Q10(k)g0(k-l) + QM(k)gl(k-l) = 0. 

Solving (5-21) and (5-22) for QJk) and Q^OO yields 

(5-21) 

(5-22) 

(5-23) 

(5-24) 
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QooCk) =f00(k)Q10(k + 1) +f 10(k)Q„(k + 1) 

(5-25) 

and 

Q01(k) =f01(k)QIO(k + 1) +f n(k)Qn(k + 1). 

(5-26) 

Substituting ( 5-25) and (5-26) into (5-23) and then solving (5-23) and (5-24) for Q,0(k) 

and Qn(k) yields 

Q,o(k) = 
-g,(k-l) 

go(k-l) 
f10(k-l)g0(k-2) 

+fn(k-l)gl(k-2). 

-S10(k) 

-g,(k-« 
f00(k-l)g0(k-2) 

+f01(k-l)gl(k-2)J 

S00(k)S11(k)-S10(k)S01(k) 

= ßo(k) 

(5-27) 

and 

Qn(k) = go(k-l) 

go(k-l) 
f10(k-l)g0(k-2) 

+fn(k-l)gl(k-2) 

Soo(k) 

-g.(k-l) 
f00(k-l)g0(k-2) 

+f01(k-l)g,(k-2) 

S00(k)S11(k)-S10(k)S01(k) 

= ß,(k). 

(5-28) 

By combining the results of (5-25)-( 5-28), the equivalence transformation Q(k) is defined as 

Q(k) = 
ß(k + l)F(k) 

ß(k)      . 

(5-29) 
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This derivation results in a new equivalence transformation ( 5-29) which is dependent on the 

discrete controllability matrix (4-10). Since the equivalent state matrix (5-19) is a function 

of the inverse of the controllability matrix, complete state controllability is a necessary 

condition for the equivalence transformation Q(k) to exist. 

5.4.    State Feedback Techniques for a Class of Linear Time-Varying Discrete Systems 

Now that an equivalence transformation has been derived for linear time-varying 

discrete systems, it is possible to develop a state feedback theorem for this class of systems. 

A new state feedback theorem for this class of systems is now introduced and subsequently 

proven. 

Theorem 5.1 

Consider a linear time-varying single-input-single-output discrete system which has 

two state variables. If the state equation (5-1) of the given system is completely 

state controllable, then there exists a state feedback law u(k)=K(k)x(k) such that the 

closed-loop feedback system is equivalent to an asymptotically stable time-invariant 

system whose state matrix assumes the form of( 5-30) with any desired eigenvalues. 

Fc = 
-a,   -<x0 

1       0 

(5-30) 

A simple proof of Theorem 5.1 is presented. In the previous section it was shown 

that, if the state equation (5-1) of a linear time-varying single-input-single-output discrete 

system which has two state variables is completely state controllable, then there exists a 

canonical transformation (5-29) which converts (5-1) into an equivalent state equation with 
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State and input matrices given by ( 5-11) and (5-12). If the desired eigenvalues of the closed 

loop feedback equivalent system are represented as X} and X2, then the following expression 

can be formed: 

(X-Xl)(X-X2) = X2 + cc,A,+ a0. 

If the equivalent feedback matrix is chosen as 

K(k) = [-f00(k)-a1   -f01(k)-a0], 

then the closed loop feedback equivalent system will have the following form, 

F =F(k) + G(k)K(k) 

foo(k) fo,(k) 
1 0 

fco« f0,(k)' 
1 0 

-a,   -a0 

+ [-fooW-a,   -f01(k)-a0] 

-foo(k)-a,   -f01(k)-a0 

0 0 

1       0 

(5-31) 

(5-32) 

(5-33) 

The eigenvalues of (5-33) are the desired eigenvalues and the solution to (5-31). The proof 

is complete. 

To obtain the state feedback gain matrix, it is necessary to multiply the equivalent 

feedback matrix ( 5-32) by the equivalence transformation ( 5-29). That is, 

K(k) = K(k)Q(k). 

(5-34) 
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If the matrix K(k) is chosen correctly, the closed-loop system represented in 

Figure 5-1 is asymptotically stable. 

u(k) 
G(k) 

~^\ 

^ x(k+l) 
delay 

x(k) 

r 
F(k) <  

K(k) 

Figure 5-1 Asymptotically Stabilized, Closed-Loop System 

An algorithm for determining the required feedback matrix K(k) is given below. 

Algorithm 5.1 

1) Compute the equivalence transformation Q(k). 

2) Compute the equivalent state and input matrices. 

3) Select desired poles and compute the feedback matrix K(k) required to give the 

desired poles. 

5.5.    Example 

The following example is used to illustrate the validity of Theorem 5.1 and to 

demonstrate the use of Algorithm 5.1 to asymptotically stabilize a linear time-varying 

discrete system. 

Consider a linear time-varying single-input-single-output discrete system with state 

equation given by (3-22). Since it was shown in example 4-1 that this system is completely 

state controllable, then by Theorem 5.1 there exists a state feedback law to asymptotically 
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stabilize the system. Algorithm 5.1 is now employed to determine the required feedback gain 

matrix K(k). 

a)        Compute the equivalence transformation Q(k). Using (5-14), the following 

matrix is formed, 

S(k) = 
0.4881231108 exp(-L5kfi   (2.494549750exp(-1.5k) 

+0.39334693403 +0.2386512185 
1.359140915exp(-0.5k)        1.359140915exp(-05k) 

(5-35) 

The inverse of (5-35) is computed as 

S-'(k) = 

-1.359140914     2.494549750exp(-k)+0.2386512185exp(05k) ' 

1.359140914    -0.4881231108exp(-k)-0.3934693403exp(0ik) 

2.727016538 exp(- 15k)- 0.2104196433 

(5-36) 

The matrix ß(k) is defined in (5-16) as the bottom row of the inverse of S(k). Computing 

ß(k) yields 

[1.359140914   -0.4881231108exp(-k)-0.3934693403exp(05k)] 
ß(k) = 

2.727016538 exp(-L5k)- 0.2104196433 

(5-37) 

The equivalence transformation Q(k) is computed from (5-29) as 
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Q(k) = 

 1   0.151632665 exp(-k) - 0.3934693403 

0.7381231109exp(-lik)>) 0.6084796369 exp(-L5k)- 0.2104196433 

-0.25525193 

^-0.4881231108exp(-k) ' 

1.359140914 

"2.727016538exp(-15k)^ 

-0.2104196433 

-0.3934693403 exp(05k) 

2.727016538exp(-15k)-0.2104196433 

(5-38) 

b) Compute the equivalent state and input matrices. From ( 5-9), the equivalent state 

matrix is computed as 

F(k) = 
foo(k)   f01(k) 

1 0 

(5-39) 

where 

Uk) = 1.023932728exp(-25k)- 1.039734596exp(-k)+0.237104788 lexp(05k) 

0.2753779232 exp(-25k) - 052201592213 exp(-k) + 0.1475880879 exp(05k) 

(5-40) 

and 

f01(k) = 
_ -0.7485548044exp(-25k)+1.217886384exp(-k)-0.08951670022exp(05k) 

0.2753779232 exp(-25k)-052201592213exp(-k)+0.1475880879exp(05k) ' 

(5-41) 

From (5-10), the equivalent input matrix is computed as 

G(k)=P 

(5-42) 
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c)        Calculate the feedback matrix K(k) required to give desired poles at 

\,X2 =Q5±Q5\. 

The characteristic equation of the desired system is computed from (5-31) as 

(X-X1)(X-X2) = 'k2 +a,A, + a0, 

where 

and 

oc0 =05 

a, =-1. 

The equivalent feedback matrix is computed from (5-32) as 

K(k) = [-f00(k) + l   -f0I(k)-O5]=[k0(k)   k,(k)], 

(5-43) 

(5-44) 

(5-45) 

(5-46) 

(5-47) 

where 

-       _ -7.485548048exp(-25k) + 5.177186739exp(-k)-0.8951670020exp(05k) 
0 2.753779232exp(-25k) - 5.2201592213 exp(-k)+1.475880879 exp(05k) 

(5-48) 

and 
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k,(k) = 
6.10865843exp(-2.5k) - 9.56878423 exp(-k)+ 0.1572265627 exp(0.5k) 

2.753779232 exp(-25k) -5.2201592213 exp(-k)+1.475880879 exp(05k) 

(5-49) 

The closed loop feedback equivalent system is computed from (5-33) as 

F =F(k) + G(k)K(k) = 
1   -0.5 

1     0 

-a,   -a0 

1       0 

(5-50) 

Equation (5-50) shows that the time-invariant equivalent matrix has the desired eigenvalues 

(5-43) and is therefore asymptotically stable. The feedback matrix K(k) is calculated from 

(5-34) as 

K(k) = [k0(k)   k,(k)], 

(5-51) 

where 

k0(k) = 

(117.7593053 exp(^k) - 32.76513858exp(-25k)"l 

+0.43815282 exp(-k) -1.103119477 exp(03k) 

(-45.69439598 exp(-5.5k) +105.9473859 exp(-4k) 

-62.34696063exp(-25k) +12.669827685 exp(-k) - 0.6534673094 exp(05k) 

(5-52) 

and 

k,(k) = 

'-49.09660744 exp(-5k) +124.1855694 exp(-35k) "| 

<-49.43022168exp(-2k) + 6.039829596 exp(-05k) - 0.6109680328 exp(k) J 

45.69439598 exp(-55k) -105.94738589 exp(-4k) + 62.34696063 exp(-2ik) 

-12.669827685exp(-k) + 0.6534673094 exp(Oik) 

(5-53) 
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5.6.    Conclusion 

Until now, equivalence transformation, state feedback, and stabilization techniques 

had not been developed for linear time-varying single-input-single-output discrete systems. 

The results of the original research in these areas for this class of systems in which there are 

two state variables are presented in this chapter. A new equivalence transformation which 

converts such a system into an equivalent canonical system is derived in section 5.3. A new 

state feedback theorem for this class of systems is developed and proven in section 5.4. A 

new stabilization algorithm which determines the required feedback gain matrix to 

asymptotically stabilize such a system is also presented in section 5.4. The use of the 

equivalence transformation, state feedback theorem, and stabilization algorithm is 

demonstrated in section 5.5 through the use of an example. The example successfully 

demonstrates that a linear time-varying discrete system which is completely state controllable 

can be asymptotically stabilized through the use of state feedback. 
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CHAPTER 6 
CONCLUSION 

6.1.    Summary 

This report presents the development of a new control scheme for linear time-varying 

continuous systems which do not satisfy the property of lexicografixed controllability. The 

scheme involves the application of sample and hold techniques for discretizing, and 

canonical transformation and state feedback techniques for stabilizing the given continuous 

system. Through the application of these methods, a linear time-varying system that is not 

lexicografixedly controllable in continuous time can be controlled and stabilized in discrete 

time. Until now, the concepts of controllability and stability and the techniques of 

discretization, canonical transformation and state feedback had not been exploited for the 

class of linear time-varying discrete systems. 

Chapter 3 is devoted to the derivation of equations modeling the discretization of a 

linear time-varying continuous system. The equations derived model the resulting discretized 

state equations in terms of the associated continuous state equations. The results indicate that 

the discretized system can be modeled as long as the state transition matrix of the continuous 

system can be computed. 

In Chapter 4, the concept of controllability is investigated for the class of linear time- 

varying multivariable discrete systems. Using the definition of controllability, a 

controllability matrix is derived and the controllability theorem developed. It is proved that 

the full rank condition of the controllability matrix is a necessary and sufficient condition for 

the system to be completely state controllable. The results show that the controllability 
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matrix of a time-varying discrete system is actually time-invariant. This implies that in 

discrete time the concepts of complete state controllability, uniform controllability, and 

lexicografixed controllability are equivalent. 

The concept of stability for linear time-varying discrete systems is investigated in 

Chapter 5. The derivation of a canonical transformation for linear time-varying single-input- 

single-output discrete systems is presented. The results show that complete state 

controllability is a necessary condition for the canonical transformation to exist. A state 

feedback technique and its associated theorem for this class of systems are also developed. 

The results show that state feedback can be used to asymptotically stabilize this class of 

systems as long as the given system is completely state controllable. An algorithm for 

determining the feedback matrix required to obtain the desired poles is presented. 

The results of this research show that a limited class of linear time-varying continuous 

systems which are not lexicografixedly controllable can be controlled through the use of the 

proposed control scheme. Based on the results of Chapters 3-5, this class of systems can be 

identified as linear time-varying single-input-single-output continuous systems which have 

two state variables and a known state transition matrix and which satisfy the property of 

complete state controllability in discrete time. 

Although the problem statement delineated in Chapter 1 focuses on linear time- 

varying multivariable continuous systems which are not lexicografixedly controllable, the 

results of this research are valid for other classes of systems as well. The discretization 

equations in Chapter 3 are valid for all continuous systems with a known state transition 

matrix. The controllability matrix and theorem presented in Chapter 4 are valid for all 
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discrete systems. The canonical transformation and state feedback techniques presented in 

Chapter 5 are valid for any linear time-varying single-input-single-output discrete system 

which has two state variables. 

6.2.    Recommendations for Future Research 

This research effort solves the problems of controllability and stabilization for a 

limited class of linear discrete systems. Extensions to this work can be made in several 

directions. Some possibilities for future research are listed below: 

1) Using the discretization results of Chapter 3 and the controllability results of 

Chapter 4, determine the subclass of linear time-varying continuous systems 

which are not lexicografixedly controllable that can be made completely state 

controllable through discretization. 

2) Investigate the use of a variable sampling period on the complete state 

controllability of discretized systems. 

3) Using the duality characteristic between controllability and observability, derive 

an observability matrix and develop the associated observability theorem for 

linear time-varying multivariable discrete systems. 

4) Extend the use of the canonical transformation derived in Chapter 5 to cover the 

entire class of linear time-varying multivariable discrete systems which are 

completely state controllable. Develop other canonical transformations for this 

class of systems. Using the duality characteristic between controllability and 

observability, derive canonical transformations for linear time-varying 

multivariable discrete systems which are completely state observable. 
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5)        Extend the state feedback technique developed in Chapter 5 to cover the entire 

class of linear time-varying multivariable discrete systems which are completely 

state controllable. Using the duality characteristic between controllability and 

observability, develop an asymptotic state estimator technique for linear time- 

varying multivariable discrete systems which are completely state observable. 
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APPENDIX A 
ILIR SOFTWARE ALGORITHMS 

This Appendix contains the symbolic math routines written in support of this research 

effort. The control algorithms developed in Chapters 3-5 were coded in the Maple symbolic 

math language and stored in a library package which is included in Section A.l. The Maple 

code written to solve the example problems in Chapters 3-5 is included in Section A.2. The 

example problems are solved by invoking the procedures stored in the ILIR library package. 

A.l.    Maple Library Routines 

# ILIR package. 

# Programmed by Mark G. Matthews 

# CECOM RD&E Center, 

# Power Generation Branch 

# AMSEL-RD-C2-PP-P, Fort Belvoir, VA. 22060 

# This package consists of the Maple code written in support of the FY94 In-House 

# Laboratory Independent Research (ILIR) Topic, 

# "State Controllability Techniques For Linear Time-Varying Discrete Systems." 
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# The following routine is used in Chapter 3 to compute the controllability matrix of a 

# linear time-varying continuous system. 

# 

ilir[ContControlMatrix]:=procCA(t)7B(t)v) &,: 

locaPMl(t)VM2(t)YM3(t)*: # local variable declarations 

global "M(ty: # global variable declarations 

if 

coldimOA(t)v)>3 # the algorithm was only written for 2x2 and 3x3 state matrices 

then 

printCthis algorithm will not work for systems with a state matrix bigger than 3x3s); 

RETURN 

fi: 

vMl(t)v:=evalmCB(t)v): 

vM2(t)v:=evalm(-vA(t)v&*vMl(t)s+map(diff,NMl(t)\t)): 

ifcoldim(vA(t)>2 

then vM(t)v:=augmentCMl(t)YM2(tr); # eq (2-18) for a 2x2 state matrix 

RETURN 

else 

vM3(t)v:=evalm(-NA(ty&*vM2(t)v+map(diff,vM2(t)\t)): 

vM(t)v:=augmentCMl(t)7M2(t)\ vM3(tr); # eq (2-18) for a 3x3 state matrix 

fi: 

end: 
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# The following routine is used in Chapter 3 to discretize a linear time-varying continuous 

# system. 

# 

ilir[discretize]:=procCA(t)\NB(t)\vC(t)v;D(t)v) 

global T(k,T)\ vG(k,T)\ vC(k,T)\ vD(k,T)\ *int_A(tau)\ Thi(t,tO)\ *A(tau)v: 

vA(tau)v:=subs(t=tau,evalmCA(t)v)); 

vint_A(tau)v:=map(inCA(tau)\tau=t0..t); 

if        # check for commutative property 

equal(evalmCA(t)v&*sint_A(tau)v),evalmCint_A(tau)v&*vA(t)N))=false 

then  # algorithm written to handle commutative systems only 

printfthis algorithm will not work for systems with a non-commutative state matrix'); 

RETURN; 

else 

vPhi(t,tO)N:=exponentialCint_A(tau)s):   #eq(2-9) 

T(k,T)v:=map(simplify,subs(t=(k+l)*T,tO=k*T,evalmCPhi(t,tO)v))): # eq (3-9) 

vG(k,T)v:=map(int,evalm(subs(t=(k+l)*T,tO=tau,evalm(vPhi(t,tO)v)) 

&*subs(t=tau,evalmCB(t)N))),tau=(k*T)..(k+l)*T):   # eq (3-10) 

'G(k,T)\=map(simplify,evalmCG(k,Tr)): 

vC(k,T)':=subs(t=k*T,evalmCC(t)')):   # eq (3-11) 

vD(k,T)v:=subs(t=k*T,evalmCD(tr)):  # eq (3-12) 

fi; 

end: 
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# The following routine is used in Chapter 4 to compute the controllability matrix of a 

# linear time-varying discrete system. 

# 

ilir[DiscreteControlMatrix] :=proc(T(k,T)x ,NG(k,T)v) 

global *S(T)\Sdet: 

local G2, Gl, GO, F2, Fl, S2, S1.S0: 

if 

coldimfF(k,T)v)>3 # the algorithm was only written for 2x2 and 3x3 state matrices 

then 

printfthis algorithm will not work for systems with a state matrix bigger than 3x3v); 

RETURN 

fi: 

if 

coldimCF(k,T)>2 

then 

Gl :=subs(k=l,evalmOG(k JT)): 

GO:=subs(k=0,evalmCG(k,T)v)): 

Fl:=subs(k=l,evalmCF(k/IT)): 

Sl:=evalm(Fl&*GO): 

SO:=evalm(Gl): 

NS(T)v:=map(simplify,augment(SO,Sl)):   # eq (4-10) for a 2x2 state matrix 
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if 

coldimOSOy)=2 

then 

Sdet:=simplify(detCSCiy)); # determinant of the discrete controllability matrix 

fi: 

RETURN 

else 

G2:=map(simplify,subs(k=2,evalmCG(k,T)v))); 

Gl:=map(simplify,subs(k=l,evalmCG(k,T)v))); 

GO:=map(simplify,subs(k=0,evalm(xG(k,T)v))); 

F2:=map(simplify,subs(k=2,evalm(T(k,T)v))); 

Fl:=map(simplify,subs(k=l,evalmCF(k,T)v))); 

S0:=evalm(G2); 

S1 :=map(simplify,evalm(F2&*Gl)); 

S2:=map(simplify,evalm(F2&*Fl&*G0)); 

vS(iy :=augment(S0,Sl,S2); # eq (4-10) for a 3x3 state matrix 

fi: 

end: 
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# The following routine is used in Chapter 4 to compute the inputs required to transfer the 

# controllable system from a given state to a desired state in n sampling periods. 

# 

ilir[InputsRequired]:=proc(xO,xfinal,period) 

global vu(required)\ vx(k+l)\ vx(l)\ vx(2)\ *x(3)\ T(k)\ vG(k)\ eql, eq2, eq3: 

if 

rowdim(xfinal)>3 # the algorithm was only written for 2x2 and 3x3 state matrices 

then 

printCthis algorithm will not work for systems with a state matrix bigger than 3x3"); 

RETURN 

fi: 

vF(k)v:=map(evalf,map(expand,subs(T=period,evalmCF(k,T)v)))); 

# the state matrix at a fixed sampling period 

vG(k)v:=map(evalf,map(expand,subs(T=period,evalm(vG(k,T)N)))); 

# the input matrix at a fixed sampling period 

if 

rowdim(xfinal)=2 # algorithm for a system with a 2x2 state matrix 

then 

%x(k+l)v :=evalmCF(k)N)&*"x(k)v+evalmCG(k)v)*su(k)v: 

# the state equation at a fixed sampling period 

vx(l)v:=evalm(subs(k=0,vx(k)v=evalm(xO);u(k)N=uO,vx(k+l)v)): 

# the state equation at the first sampling instant 

87 



vx(2)\=evalm(subs(k=i;x(k)v=x(l)s;u(ky=ui;x(k+l)v)): 

# the state equation at the second sampling instant 

eql:=vx(2)x[l,l]: # first simultaneous linear equation 

eq2:=vx(2)v[2,l]: # second simultaneous linear equation 

vu(required)v:=evalf(solve({eql=xfinal[l,l],eq2=xfinal[2,l]},{u0,ul})); 

# solving two simultaneous linear equation with two unknowns to determine the input 

# required to transfer the system from the initial state to the desired state 

RETURN 

fi: 

if 

rowdim(xfinal)=3 # algorithm for a system with a 3x3 state matrix 

then 

vx(k+ir:=evalmCF(k)v)&*Nx(k)N+evalmCG(kr)&*vu(k)v; 

# the state equation at a fixed sampling period 

vx(l)v:=map(evalf,evalm(subs(k=0;x(k)N=evalm(xO);u(k)v=matrix(2,l,[uOO,ulO]);x(k+l)N)) 

); 

# the state equation at the first sampling instant 

vx(2)N:=map(evalf,evalm(subs(k=l,vx(k)v=evalmCx(l)v),vu(k)v=matrix(2,l,[u01,ull]), 

Xk+ID)); 

# the state equation at the second sampling instant 

vx(3r:=map(evalf,evalm(subs(k=2;x(k)v=evalmCx(2)v);u(kr=matrix(2)l)[u02,ul2]), 

Xk+ir))); 
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# the state equation at the third sampling instant 

eql:=vx(3)v[l,l]=xfinal[l,l]; # first simultaneous linear equation 

eq2:=vx(3)v[2,l]=xfinal[2,l]; # second simultaneous linear equation 

eq3:=vx(3)v[3,l]=xfinal[3,l]; # third simultaneous linear equation 

vu(required)v:=solve({eql,eq2,eq3},{u00,u01,u02,ul0,ull,ul2}): 

# solving three simultaneous linear equations with six unknowns to find the non-unique input 

# required to transfer the system from the initial state to the final desired state 

RETURN 

fi: 

end: 
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# The following example is used in Chapter 5 to compute the feedback gain matrix 

required 

# to give closed-loop poles at desired locations. 

# 

ilir[StateFeedback] :=proc(pole 1 ,pole2,period) 

global vQ(k)\ vFbar(k)\ vGbar(k)\ vFbar(k)c\vK(k)v;F(k)v;G(k)\vKbar(k)\vSbar(k)v, 

vSbarinv(k)\ sBeta(k)\ char_eq, alpha, alphaO, alphal, alpha2: 

local vSbarO0(k)\ vSbar01(k)\ vSbarlO(k)\ vSbarl l(k)\ vBeta(k+l)F(k)x: 

T(k)v:=map(evalf,map(expand,subs(T=period,evalm(vF(k,T)v)))); 

vG(k)x:=map(evalf,map(expand,subs(T=period,evalm(vG(k,T)v)))); 

^SbarOO(k)v :=evalf(expand(subs(k=k-1 /G(k)v [1,1]))): 

vSbarlO(k)v:=evalf(expand(subs(k=k-l/G(k)v[2,l]))): 

vSbar01(kr:=evalf(expand(subs(k=k-i;F(kr[l,l])*subs(k=k-2;G(k)v[l,l]) 

+subs(k=k-l,T(kr[l,2])*subs(k=k-2,NG(ky[2,l]))): 

vSbarll(kr:=evalf(expand(subs(k=k-i;F(kr[2,l])*subs(k=k-2,vG(k)x[l,l]) 

+subs(k=k-1 ,T(k)v [2,2])*subs(k=k-2,vG(k)v [2,1]))): 

vSbar(k)v:=matrix(2,2,[vSbar00(kr;Sbar01(k)v;Sbarl0(k)\vSbarll(k)N]); 

" Sbarinv(k)": =inversef Sbar(k)N); 

xBeta(ky :=map(evalf,map(expand,matrix( 1,2,[vSbarinv(k)v [2,1], xSbarinv(k)v [2,2]]))): 

NBeta(k+l)F(k)v:= 

map(evalf,map(expand,evalm(subs(k=k+l,evalm(vBeta(k)v))&*evalm(vF(k)v)))): 

NQ(k)v:=map(simplify,matrix(2,2,rBeta(k+l)F(kr[l,l];Beta(k+l)F(k)v[l,2];Beta(k)ll,l], 
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*Beta(kni,2]])): 

xFbar(k)v:=map(simplify,map(expand,evalm(subs(k=k+l,evalmCQ(k)v)) 

&*evalmCF(k)s)&*inverse(evalm(vQ(k)v))))); 

vFbar(k)v[2,l]:=l: 

vFbar(k)v[2,2]:=0; 

vGbar(k)v :=matrix(2,1 ,[1,0]); 

char_eq:=expand((lambda-polel)*(lambda-pole2)); 

alphaO: =coeff(char_eq,lambda,0): 

alphal:= coeff(char_eq,lambda,l): 

alpha2:= coeff(char_eq,lambda,2): 

alpha:=coeffs(normal(expand((lambda-polel)*(lambda-pole2)))); 

NKbar(k)v:=map(simplify,matrix(l,2,[-vFbar(k)v[l,l]-alphal,-vFbar(k)v[l,2]-alphaO])): 

vFbar(k)cv:=matrix(2,2,[-alphal,-alphaO,l,0]): 

xK(k)v:=map(simplify,evalmCKbar(k)v&*vQ(ky)): 

end: 

# 

saveilir; # save the ilir library package to a file 
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A.2.    Maple Code for Example Problems 

A.2.1.    Example 3-1 

>#File=ilir3-l.ms 

> #    This file contains the code used to solve example 3-1 

> with(linalg): # make the linear algebra package available 

>vA(t)v:=matrix(2,2,[-l,exp(-2*t),0,-l]): # the given state matrix 

>vB(t)v:=matrix(2,l,[l,exp(l-t)]): # the given input matrix 

>sC(t)v:=matrix(l,2,[exp(-2*t),-l]): # the given output matrix 

>"D(t)v:=l: # the given direct transmission matrix 

>readxilirv: # read the ilir library package 

> ilir[ContControlMatrix](vA(t)YB(t)v): # compute the continuous controllability matrix 

> evalmCM(tr); # eq (3-18) 

> "M(t)v :=map(combine,NM(t)\exp); # simplifying eq (3-18) 

> vMdet(t)v:=combine(expand(detCM(tn),exp); # eq (3-19) 

> plotOMdet(t)\t=0..5); # Figure 3-1 

> fsolveCMdet(t)v=0,t=0..0.5); # solving for the zero crossing in Figure 3-1 

> ilir[discretize]CA(t)7B(t)7C(t)7D(tn: # discretize the given system 

> evalmCint_A(taur&*vA(tf); # eq (3-20) 

> print(vPhi(t,tO)v); # eq (3-21) 

> printCF(k,TX); # eq (3-22) 

> printCG(k/rr); # eq (3-23) 

> printOC(k,Tr); # eq (3-24) 

> printCD(k,T7); # eq (3-25) 
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A.2.2.    Example 3-2 

> #    File=ilir3-2.ms 

> #    This file contains the code used to solve example 3-1 

> with(linalg): # make the linear algebra package available 

>vA(t)v:=matrix(2,2,[exp(-t),0,0,exp(-t)]): # the given state matrix 

>vB(t)v:=matrix(2,2,[l,l,l,l]): # the given input matrix 

>vC(t)s:=matrix(l,2,[t,l]): # the given output matrix 

>vD(t)v:=matrix(l,2,[t,l]): # the given direct transmission matrix 

>readNilif: # read the ilir library package 

> ilir[ContControlMatrix]fA(t)YB(tD: # compute the continuous controllability matrix 

> printCM(tr); # eq(3-31) 

> ilir[discretize]0A(t)7B(t)YC(t)7D(tr): # discretize the given system 

> print(Thi(t,tO)v); # eq (3-32) 

> printCF(k,iy); # eq (3-33) 

> printCG(k/iy); # eq (3-34) 

> printOC(kjy); # eq (3-37) 

> printfD(k,T)v); # eq (3-38) 
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A.2.3.    Example 3-3 

> # File=ilir3-3.ms 

> #    This file contains the code used to solve example 3-3 

> with(linalg): # make the linear algebra package available 

> NA(t)v:=matrix(3,3,[2-4*exp(-2*t),0,0,0,l,0,0,0,3/2-2/(t+l)]); # the given state matrix 

>vB(t)v:=matrix(3,2,[l,0,l, 1,0,13); # the given input matrix 

>readxilirv: # read the ilir library package 

> ilir[ContControlMatrix]OA(t)YB(t)v): # compute the continuous controllability matrix 

>print(vM(t)v); # eq(3-44) 

> ilir[discretize]0A(t)7B(t)YC(t)7D(tn: # discretize the given system 

> print(Thi(t,tO)N); # eq (3-45) 

> printCF(k,Ty); # eq (3-46) 

> printCG(k,iy);   # eq (3-47) 
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A.2.4.    Example 4-1 

># File=ilir4-l.ms 

> # This file contains the code used to solve example 4-1 

> with(linalg): # make the linear algebra package available 

> vA(t)v:=matrix(2,2,[-l,exp(-2*t),0,-l]):  # the given state matrix 

>vB(t)v:=matrix(2,l,[l,exp(l-t)]): # the given input matrix 

> vC(t)x:=matrix(l,2,[exp(-2*t),-l]): # the given output matrix 

>" D(ty :=1:   # the given direct transmission matrix 

>readvilirv: # read the ilir library package 

> ilir[discretize]0A(t)7B(t)YC(t)YD(t:r): # discretize the given system 

>ilir[DiscreteControlMatrix](T(k,T)7G(k)TO: 

# calculate the discrete controllability matrix 

> map(simpliry/SOy); # eq (4-15) 

> simplify(Sdet); # eq (4-16) 

> plot(Sdet,T=0..3.5); # Figure 4-1 

>zerol:=fsolve(Sdet=0,T=0..0.1); # first zero crossing 

> zero2:=fsolve(Sdet=0,T=0.3..0.4); # second zero crossing 

> lowl:=fsolve(Sdet=-0.001,T=0..0.2); # computing desirable range of T 

> low2:=fsolve(Sdet=-0.001,T=0.2..0.4); # computing desirable range of T 

> low3:=fsolve(Sdet=0.001,T=0.3..0.4); # computing desirable range of T 

>low3:=fsolve(Sdet=0.001,T=4..5); # computing desirable range of T 

>x0:=matrix(2,l,[2.0,5.0]); # given initial state 
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>x2:=matrix(2,l,[0.5,2.5]); # desired final state 

> period:=0.5; # selected sampling period 

> ilir[InputsRequired] (x0,x2,period): 

# calculating inputs required to transfer system from given initial state to final desired state 

>printfx(k+l)v); # eq (4-20) 

> map(evalf;x(l)x); # eq (4-21) 

> map(evah?x(2)v); # eq (4-22) 

> printfu(required)v); # eq (4-23) 
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A.2.5.    Example 4-2 

># File=ilir4-2.ms 

> # This file contains the code used to solve example 4-2 

> with(linalg): # make the linear algebra package available 

> NA(t)v:=matrix(2,2,[exp(-t),0,0,exp(-t)]): # the given state matrix 

>NB(t)v:=matrix(2,2,[l,1,1,1]): # the given input matrix 

>vC(t)N:=matrix(l,2,[t,l]): # the given output matrix 

>vD(t)x:=matrix(l,2,[t,l]): # the given direct transmission matrix 

>readvilirv: # read the ilir library package 

> ilir[discretize]0A(t)YB(t)YC(t)7D(t)v): # discretize the given system 

> ilir[DiscreteControlMatrix](T(k,T)YG(k,T)v): # calculate discrete controllability matrix 

> map(simplify/S(Ty); # eq (4-24) 
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A.2.6.    Example 4-3 

># File=ilir4-3.ms 

> # This file contains the code used to solve example 4-3 

> with(linalg): # make the linear algebra package available 

> vA(tr:=matrix(3,3,[2-4*exp(-2*t),0,0,0,l,0,0,0,3/2-2/(t+l)]): # the given state matrix 

> vB(t)v:=matrix(3,2,[l,0,l,1,0,1]): # the given input matrix 

>readvihY: # read the ilir library package 

> ilir[discretize]CA(t)\vB(t)v,vC(t)v;D(t)v): # discretize the given system 

> ilir[DiscreteControlMatrix]CF(k,T)\vG(k,T)N): # calculate discrete controllability matrix 

> map(simplify/S(Ty); # eq (4-27) 

> vSsub(T)\=augment(colCS(T)M),colCS(Tr,2),colCS(T)\3)); # eq (4-38) 

> vSdet(T)v:=simplify(detCSsub(T)v)); # eq (4-39) 

> plotCSdet(T)\T=0..0.5); # Figure 4-2 

>first_zero:=fsolveCSdet(T)N=0,T,0..0.1); # first zero crossing 

> second_zero:=fsolveOSdet(iy=0,T,0.3..0.4); # second zero crossing 

> negl:=fsolveCSdet(T)v=-0.001,T,0..0.2); # computing desirable range of T 

> neg2:=fsolveCSdet(T)N=-0.001,T,0.2..0.4); # computing desirable range of T 

> pos2:=fsolveCSdet(Tr=0.001,T,0.35..0.4); # computing desirable range of T 

> high:=fsolveCSdetOy=10A6,T,1.0..3.0); # computing desirable range of T 

>x0:=matrix(3,l,[2.0,5.0,1.0]); # given initial state 

>x3:=matrix(3,l,[0.5,2.5,0.]); # desired final state 

> period:=0.5: # selected sampling period 
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> ilir[InputsRequired](xO,x3,period): 

# calculating inputs required to transfer system from given initial state to final desired state 

> printCF(kr); # eq (4-44) 

> printCG(k)v); # eq (4-45) 

>printCx(l)v); # eq (4-46) 

> print0x(2)v); # eq (4-47) 

> printfx(3)v); # eq (4-48) 

> printfu(required)x); # eq(4-49) 

>u01:=2.5; # assigned input 

>u02:=0;   # assigned input 

>ull:=2.5; # assigned input 

>solve({eql,eq2,eq3},{uOO,ulO,ul2}); # eq(4-51) 
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A.2.7.    Example 5-1 

#File=ilir5~l.ms 

#  Maple code used to solve example 5-1 

> with(linalg): # make the linear algebra package available 

> vA(t)N:=matrix(2,2,[-l,exp(-2*t),0,-l]); # the given state matrix 

> vB(t)v:=matrix(2,l,[l,exp(l-t)]); # the given input matrix 

> T(t)v:=matrix(l,2,[exp(-2*t),-l]); # the given output matrix 

> *D(t)v:=l; # the given direct transmission matrix 

>readNihY: # read the ilir library routines 

>ilir[discretize]CA(t)7B(t)YC(t)7D(t)v): # discretize the system 

> ilir[DiscreteControlMatrix](vF(k,T)YG(k,T)v): # compute discrete controllability matrix 

> period:=0.5: # selected sampling period 

>polel:=0.5+0.5*I: # desired pole 

> pole2:=0.5-0.5*I: # desired pole 

> ilir[StateFeedback](polel,pole2,period): # invoke the state feedback algorithm 

> map(simplify;Sbar(k)v); # eq (5-35) 

> printCSbarinv(k)s); #eq(5-36) 

> print(vBeta(k)v); # eq (5-37) 

> printCQ(k)v); # eq (5-38) 

> printCFbar(k)v); # eq (5-39) 

> printCGbar(kn; # eq (5-42) 

> print(char_eq); #eq(5-44) 
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> print(alphaO, alphal); # eqs (5-45)-5-46) 

> printCKbar(kr); # eq (5-47) 

> printCFbar(k)cv); # eq (5-50) 

> printCK(k)v); #eq(5-51) 
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APPENDIX B 
ISCA PAPER 

The principal investigator presented an invited paper documenting interim ILIR 

results on controllability and served as a Session Chair at the 1994 International Conference 

on Computers and Their Applications [15]. This paper is included in this Appendix. 
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Abstract 

A robot manipulator can be modeled by a linear, time- 
varying, multivariable system which is obtained by 
linearizing the manipulator dynamics about a moving 
operating point on the path that the manipulator tracks. 
It is found that if a time-varying system is 
lexicografixedly controllable, then there exists a state 
feedback controller which can assign an arbitrary set of 
eigenvalues to the closed-loop, feedback system. This 
paper presents some preliminary results of a new 
approach to control of robotic systems modeled by a 
linear, time-varying system that is not lexicografixedly 
controllable. The proposed approach considers 
discretization of the time-varying system and selection 
of a sampling time to make the resulting discrete system 
become lexicografixedly controllable. After defining 
the controllability of time-varying, discrete systems, a 
theorem is given and proved. An example of a single- 
input-single-output (SISO) system is carried out to 
demonstrate the dependence of controllability on 
sampling times. 

1    Introduction 

The inherent nonlinearity of robotic systems, caused 
by intercoupling of joints, combined with the 
uncertainty in their dynamics make the control of such 
systems a challenging task. Consequently, advanced 
control schemes, such as adaptive control schemes [1], 
have been developed for controlling robot motion. A 
simple but effective method for robot control is the use 
of linearization about a selected fixed operating point 
resulting in a linear, time-invariant system representing 
an approximated model of the robot system [8]. The 
performance of the above scheme starts to degrade as 
the robot moves away from the operating point. To 
improve the performance of the above scheme, a so 
called path-dependent linearization was developed [7]- 
[8] so that the linearized model can be updated as the 
robot moves along the desired path. Based upon the 
linearization about a moving operating point whose 

position and orientation are functions of time, this 
improved method results in a linear, time-varying 
system which can accurately model the robot dynamics. 
The study in [3] found that if a time-varying system is 
lexicografixedly controllable, then there exists a state 
feedback controller [4] which can assign an arbitrary set 
of eigenvalues to the closed-loop feedback system. 
This paper considers the control problem of a robotic 
system which is modeled by a linear, time-varying 
system that is not lexicografixedly controllable. A new 
approach to be proposed will consider discretization of 
the time-varying system and selection of a sampling 
time to make the resulting time-varying, discrete system 
become lexicografixedly controllable. Developed 
algorithms for lexicografixedly controllable systems 
given in [4] may then be applied to control the time- 
varying, discrete, robotic systems. 

This paper presents some preliminary results of the 
study and is organized as follows. Section 2 presents 
the discretization using zero-order hold (ZOH) devices. 
Section 3 defines the controllability of the resulting, 
time-varying, discrete system and introduces a theorem 
to facilitate the testing for controllability. The concept 
of controllability is then investigated for a single-input- 
single-output (SISO) system and the results are 
presented in Section 4. Section 5 outlines the future 
research and concludes the paper. 

2    Discretization 

The dynamics of a robot manipulator having n 
degrees of freedom can be described by the following 
equation of motion, 

T(t) = M(q)q'+N(q,q') + G(q), 

(1) 

where x(t) is the (nxl) joint torque vector, and q, q'and 
q" are the (nxl) vectors of joint positions, velocities, 
and accelerations, respectively. M(q), N(q,q') and G(q) 
represent the (nxn) inertia matrix, the (nxl) Coriolis 
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(centrifugal and frictional force) vectors, and the (nxl) 
gravity vector, respectively. 

Linearizing (1) with respect to an operating point 
whose joint position, velocity, and acceleration are 
evaluated along a desired path, and are thus functions of 
time, the following linear, time-varying, state equations 
are obtained: 

x(t) = A(t)x(t) + B(t)u(t) 

y(t) = C(t)x(t), 

(2) 

where z(t) = | q(t) q(t) |, y(t) = q(t), u(t) = T(t), and 
A(t), B(t), and C(t) are time-varying matrices. 

Now if the inputs to the above system are sampled 
with ZOH devices, as shown in Figure 1, 

ui(t) V- 
T 

u2(t) ^~ 
• T 

ur(t) V- 

Z.UI1 

, 
zon   " 

zoh   ~ 

Figure 1 - Linear Time-Varying Multivariable 
Discrete System 

then the resulting system is a linear, time-varying, 
discrete system described by 

where 3>(t, to) is the state transition matrix of the 
continuous system (2). Methods of computing the state 
transition matrix are well known and can be found in 
[6]. 

If the resulting discretized system is determined to be 
uniformly controllable, uniformly observable, and 
lexicografixed, then optimization and stabilization 
methods, similar to those in [2]-[5], should be possible. 

There are several obstacles preventing the application 
of this scheme. The concepts of controllability, 
observability, and lexicografixedness have not been 
developed for time-varying, discrete systems. In 
addition, the methods in [2]-[5] apply only to 
continuous systems. Similar methods need to be 
developed for discrete systems. These obstacles are the 
subject of on-going research. Results in the area of 
controllability will be presented in the following 
section. 

3    Controllability of Linear Time- 
Varying Multivariable Discrete Systems 

In section 3.1, a controllability matrix for linear, time- 
varying, multivariable, discrete systems is derived. The 
utility of this matrix will become apparent in section 
3.2, where a controllability theorem for this class of 
systems is introduced and proved. 

3.1    Derivation of the Controllability Matrix 

Consider a linear, time-varying, multivariable, 
discrete, control system whose state equation is defined 
as 

x((k + 1)T) = F(k,T)x(kT)+G(k,T)u(kT), 

x((k+1)T) = F(k, T)x(kT)+G(k, T)u(kT) 

y(kT) = C(kT)x(kT). 

(3) 
The state and input matrices of the discrete system are 

defined by 

F(k,T) = <K(k + l)T,kT) 

(4) 

and 

G(k 
(k+l)T 

,T)=    J<D((k + l)T, T)B(T)dT, 
kT 

(5) 

(6) 

where 

x(kT) = (nxl) state vector at the kth sampling instant 
u(kT) = (rxl) control vector at the kth sampling instant 
F(k,T) = (nxn) state matrix at the kth sampling instant 
G(k,T) = (nxr) input matrix at the kth sampling instant 
T = the sampling period. 

Definition: The discrete-time control system given by 
(6) is said to be completely state controllable, if there 
exists a piecewise-constant control vector u(kT) defined 
over a finite number of sampling periods, such that 
starting from any initial state the state x(kT) can be 
transferred to the desired state xf in at most n sampling 
periods [6]. 
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Using the previous definition, a controllability matrix 
for a linear, time-varying, multivariable, discrete system 
will now be derived. By recursion, the solution to the 
system, x(kT), can be found. That is: 

For k=0, 

x(T) = F(0,T)x(0)+G(0,T)u(0). 

Fork=l, 

x(2T) = F(l, T)F(0, T)x(O) + F(l, T)G(0, T)u(O) 

+G(l,T)u(T). 

For k=2, 

(7) 

(8) 

x(nT)-[F(n-l,T)F(n-2,T)...F(0,T)]x(0) 

= Z^[F(n-1'T)F(n-2,T)...F(j+l,T)]G(j,T)u(jT) 

= [F(n-l,T)F(n-2,T)...F(l,T)]G(0,T)u(0) 

+[F(n-l,T)F(n-2,T)...F(2,T)]G(l,T)u(D 

-KF(n-l,T)F(n-2,T)...F(3,T)]G(2,T)u(2T) 

+...+G(n-l,T)u((n-l)T). 

(13) 

Equation (13) can be written in a matrix form as 

x(nT)-[F(n-l,T)F(n-2,T)...F(0,T)]x(0) = 

G(n-1,T) T  u((n-l)T) 

F(n-l,T)G(n-2,T) u((n-2)T) 

[F(n -1, T)F(n - 2, T)... F(l, T)]G(0, T) u(0) 

x(3T) = F(2,T)F(l,T)F(0,T)x(0) 

+F(2,T)F(l,T)G(0,T)u(0) 

+F(2,T)G(l,T)u(T) + G(2,T)u(2T). 

(9) 

For k=3, 

x(4T) = F(3,T)F(2,T)F(l,T)F(0,T)x(0) 

+F(3, T)F(2, T)F(1, T)G(0, T)u(O) 

+F(3,T)F(2,T)G(l,T)u(T) 

+F(3, T)G(2, T)u(2T)+G(3, T)u(3T). 

Repeating this procedure, gives 

(10) 

x(kT) = [F(k-l,T)F(k-2,T)...F(0,T)]x(0) 

+X^öf[F(k-1'T)F(k-2'T)...F(j+l,T)]G(jT)u(jT). 

(11) 

If k=n, the following equation is obtained. 

x(nT) = [F(n-l,T)F(n-2,T)...F(0,T)]x(0) 

-*-5L^ToC[FCn-l,X)F(n-2,*D---F(j-i-l,X)]GCjT)u<:jX) 

(12) 

The previous equation can be rewritten as 

(14) 

Consequently, a controllability matrix can be defined 
as 

S(T) = 

G(n-1,T) 

F(n-l,T)G(n-2,T) 

[F(n -1, T)F(n - 2, T)... F(l, T)]G(0, T) 

(15) 

Substituting (15) into (14) yields, 

x(nT) - [F(n -1, T)F(n - 2, T)... F(0, T)]x(0) 

u((n-l)T) 

= S(T) 
u((n-2)T) 

u(0) 

(16) 

In compact form, the controllability matrix can be 
written as 

S(T) = |So(T)   Si(T)   ...   Sn-i(T)|, 

(17) 
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where X(nT) = S(T)U(nT). 

So(T) = G(n-l,T), 

(18) 

and 

Si(T) = nF(n-j,T)|G(n-l-i,T). 

(19) 

Since G(k,T)is an (nxr) matrix, each of the matrices 
S0(T), Si(T),...,S„.i(T) is an (nxr) matrix. Therefore, the 
controllability matrix is an (nxnr) matrix. 

3.2    Controllability Theorem 

Testing for the state controllability of a linear, time- 
varying, multivariable, discrete system is greatly 
facilitated by the following theorem. 

Theorem: The state equation (6) of a linear, time- 
varying, multivariable, discrete, system is completely 
state controllable, if and only if the rank of the (nxnr) 
controllability matrix is n at some sampling period, T. 
The condition for complete state controllability is 

rank(S(T)) = n. 

(20) 

Proof: The proof is similar to that of linear, time- 
invariant, discrete systems [6]. To prove the necessity, 
assume the state equation is state controllable, and then 
show that the rank of the controllability matrix equals n. 
The state transition equation of the discrete system was 
written in (16) as 

x(nT) - [F(n -1, T)F(n - 2, T)... F(0, T)]x(0) 
u((n-l)T) 

= S(T) 
u((n-2)T) 

u(0) 

(21) 

The left hand side of the previous equation can be 
represented as an (nxl) vector, X(nT). Then (21) can 
be written as 

(22) 

If the system is assumed to be completely state 
controllable, then every initial state, X(0), can be 
transferred by unconstrained controls, U(nT), to any 
final state, X(nT), for finite N. Thus the problem is that 
of 
given S(T) and every vector X(nT) in the n-dimensional 
state space, solve for the controls U(nT). Since (22) 
represents n simultaneous linear equations, from the 
theory of linear equations, these equations must be 
linearly independent for solutions to exist. Therefore 
the matrix S(T) must have full rank (equal to n) for 
solutions to exist. 

Contradiction is used to prove the sufficiency of the 
theorem. Assume that the controllability matrix does 
not have full rank, and that the system is completely 
state controllable. If 

rank(S(T))<n, 

(23) 

then, from the theory of linear equations, S(T) does not 
have n linearly independent columns. If S(T) does not 
have at least n linearly independent columns, then given 
X(nT) and U(nT), the set of simultaneous linear 
equations, given in (22) as 

X(nT) = S(T)U(nT), 

(24) 

cannot be solved. 
This means that unconstrained controls to transfer 

every initial state X(0) to any final state X(nT) cannot 
be found. This contradicts the assumption that the 
system is completely state controllable. Consequently, 
the rank condition given by (20) is found to be a 
necessary and sufficient condition for complete state 
controllability. The proof is now complete. 

4    Example 

This section contains an example to illustrate the 
concepts presented in the previous two sections.   In this 
example, it is assumed that the fixed-point linearization 
scheme has been applied to a non-linear robotic system 
and that the linearization point is allowed to vary. The 
result is a linear, time-varying, continuous system with 
dynamic equations given by (2). Assume that the state 
equation of the resulting system is given by 
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x(t) = 
-1   exp(2t) 

0        -1 
x(t) + u(t). 

(25) 

The controllability matrix can be computed as 

Q(t) = 
t2    t2+2t 

0        0 

(26) 

It is obvious that the determinant of the controllability 
matrix is zero. This implies that the system is not 
uniformly controllable. Therefore the methods in [2]- 
[5], cannot be used to control the system. 

However, the scheme introduced in section 2 can be 
used to control the system. The system is discretized by 
the application of a sample and zero-order hold to the 
input. If this is done, the discretization equations (4)- 
(5) must be applied to the system. The state equation of 
the resulting linear, time-varying, discrete system is 
given by (6). The resulting state and input matrices are 
computed as 

F(k,T) = 
exp(-T)   ex 

1 
■G1 exp(2(k+l)T--exp(2kT) 

exp(-T) 

(27) 

and 

G(k,T) = 

'(-k2T2+2kT-2)exp(-T) 

+(k2+2k+l)T2-(2k+2)T+2^ 

}(k+I)'-ik>}* 

(28) 

From (17)-(19), the controllability matrix, for a 
single-input system in which the state matrix has 
dimension n=2, is 

S(T) = |G(1,T)   F(1,T)G(0,T) |. 

Solving for the controllability matrix, yields 

(29) 

S(T) = 

(+2T-T2-2)exp(-T) 

-KT2-4T + 2 

-2exp(-2T) 

+(T2-2T+2)exp(-T) 

+yexp; 
-exp(4T) 

-^exp(2T) 

-r \T3-2} *p(-T) 

+T -2T+2 

(30) 

The theorem presented in section 3, states that a 
discrete system is completely state controllable, if and 
only if the controllability matrix has full rank for some 
sampling period. It is also well known that the 
controllability matrix has full rank at values of T for 
which the determinant of the controllability matrix is 
non- zero. Solving for the determinant, yields 

Sdet(T) = - 

( 

1        2 
-T5--T4-4T3-2T2+4T-4 exp(-2T) 
\i 3 

T5 --T4 + 16T2 - 16T+8 kxp(-T) 

7 (\ 1 N 

--T6 expl-exp(4T) --exp(2T) 

-KlT4-12T3 + 18T2-12T+4. 

(31) 

The above equation is plotted as a function of the 
sampling period. 

-2 

-6 

-lO- 
ll 0.1        0.2        0.3   j  0.4        0.5        0.6        0.7 

Figure 2 - Determinant as a Function of Sampling 
Period 
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Figure (2), shows that the value of the determinant 
starts out at zero and then decreases. Upon close 
inspection, it can be seen that the determinant is non- 
zero for T>0.32. Additionally, solving the previous 
equation shows that the determinant approaches infinity 
for T>0.89. Since a determinant of infinity is also 
undesirable, it can be concluded that the system is 
completely state controllable for sampling periods in 
range of 

0.32 <T< 0.89. 

(32) 

Now a sampling period will be selected and it will be 
shown that, given an initial state, the system can be 
transformed into a final desired state in n sampling 
periods. If a sampling period of T=0.5 seconds is 
selected, the state equation becomes 

xo(k+l) 

xi(k + l) 

1 0 expl-2 1  CXP 

1 

(1 -exp(k+l) 

= --exp(k) 

expB) 
xo(k) 

xi(k) 

I*—Hfi 
+ 1     ,       1 

+~k2--k + 
I  4        2 

1     ,       1 
«k2+- 
8        8 

5 

4              J 
u(k). 

(33) 

If the initial state, at k=0, is given as 

xo(0) 

xi(0) 

(34) 

then the state equation, at k=0, becomes 

(       (   ,\ /-, 

xo(l) 

Xl(l) 

(c r 

5exp 
1 \\ 
-exp(l) — 
/ L) 

5 f    1 , 
--2exp--b(0) 
7 V   z)) 

2+5ex! *HH u(0) 

(35) 

The state equation, at k=l, becomes 

xo(2) 

xi(2) 

5    J    l —exri-— 
v 

+1 u(l) 
■J J 

+exp 
11, 
-exp(2) - -exp(l) 12 + 5exp) -- 

f   O 

-2exp( -i)+H4) 
exp(2)--exp(l) 

u(0) 

1 
+exp ——  2exp 

u(l) + 
24 

+5exp 

-- l+5ex: 

1 

1 1 
-exp(I)-- 

-—exp|--|+T|u(0) + 2ex] 

-exp(l)-- 
\l I) 

(36) 

If the desired state is given as 

xo(2) 

xi(2) 

(37) 

then it can be shown, by substituting (37) into (36) and 
then solving the set of simultaneous linear equations, 
that inputs of 

(38) 

u(0) =-119.956     and     u(l) = -20.944 

will produce the desired state (37). 

5    Conclusions 

This paper presents the development of a new robotic 
control scheme. The scheme involves linearizing, 
through fixed-point linearization, and discretizing, 
through sample and hold techniques, the robotic system. 
Through the application of these methods, a robotic 
system can be modeled as a linear, time-varying, 
multivariable, discrete system. 

Until now, the concept of controllability had not been 
developed for such systems. In this paper, the 
controllability of linear, time-varying, multivariable, 
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discrete systems was investigated. Using the definition 
of controllability, a controllability matrix was derived 
and a controllability theorem introduced. It was proved 
that the full rank condition of the controllability matrix 
is a necessary and sufficient condition for the system to 
be completely state controllable. Through an example, 
it was shown that, if the system is controllable, the state 
variables of a linear, time-varying, discrete system can 
be transformed to any arbitrary state in a finite number 
of sampling periods. 

On-going research focuses on expanding these results 
to the observability property of such systems and then 
exploiting the uses of the controllability and 
observability matrices. State feedback controllers and 
state estimators are two potential applications. Once 
these concepts have been fully developed for linear, 
time-varying, multivariable, discrete systems, then the 
implementation of the control scheme presented in this 
paper can be applied to control non-linear robotic 
systems. 

[8] Sparmo J. R., Zhou-Lei Z., Walsh T. M., Nguyen C. 
C, "Cartesian-Space Control of Robot Manipulators 
Using Path-Dependent Linearization," Proc. of 
ISMMfor Computer Application in Design, 
Simulation and Analysis, Reno, NV, pp. 270-273, 
1989. 
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